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Abstract 

The purinergic signalling system comprises extracellular nucleotides such as adenosine 

triphosphate (ATP), which signals through the two P2 receptor subfamilies; P2X (P2X1-7) 

and P2Y (P2Y1, 2, 4, 6, 11, 12, 13, and 14). Breakdown of ATP to adenosine diphosphate (ADP) and 

adenosine monophosphate (AMP), by the ecto-nucleotidase ecto-nucleoside triphosphate 

diphosphohydrolase-1 (CD39), and finally AMP to adenosine, by ecto-5’-nucleotidase 

(CD73) allows activation of adenosine receptors (A1, A2A, A2B and A3). Purinergic signalling 

is important in inflammation and immunity, and has been implicated in transplantation, 

including hematopoietic stem cell transplantation (HSCT) and a major complication of 

allogeneic HSCT; graft-versus-host disease (GVHD). In allogeneic mouse models of GVHD, 

activation of P2X7, or blockade of CD73 or A2A, worsen disease, while A2A activation 

reduces GVHD. Purinergic signalling is also implicated in skin disorders including psoriasis. 

Prior to this thesis, the role of purinergic signalling in humanised models of GVHD and the 

imiquimod (IMQ)-induced psoriasis-like inflammatory mouse model remained unexplored. 

The overarching aim of this thesis was to establish a humanised non obese diabetic (NOD)-

severe combined immunodeficient (SCID)-IL-2 receptor γ common chain null (IL-2Rγnull) 

(NSG) mouse model of GVHD in our laboratory and utilise this model to investigate the role 

of purinergic signalling in this disease. Additionally, this thesis aimed to establish the IMQ-

induced psoriasis-like inflammatory mouse model in our laboratory and to investigate the role 

of P2X7 in this model. 

Chapter 2 details the establishment of the humanised NSG mouse model of GVHD, where 

NSG mice injected with human (h) peripheral blood mononuclear cells (PBMCs), 

subsequently develop GVHD. During this study, 10 mice developed clinical GVHD and three 

mice developed subclinical GVHD only. A comparison of these mice highlighted that clinical 

GVHD correlated with increased splenic hCD4+:hCD8+ T cell ratios, serum human interferon 
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(IFN)-γ concentrations and intestinal interleukin (IL)-17 expression. Comparison of healthy 

mice with those with subclinical or clinical GVHD allowed characterisation of histological 

GVHD. This revealed leukocyte infiltration and histological damage in the liver, small 

intestine and skin, target organs of GVHD. 

Chapters 3 and 4 investigated the role of P2X7 in the humanised NSG mouse model of 

GVHD. A short-term regime of P2X7 blockade using Brilliant Blue G (BBG) (Chapter 3) did 

not impact survival, but reduced serum hIFN-γ concentrations and leukocyte infiltration and 

damage to the liver, small intestine and skin. A long-term regime of BBG (Chapter 4) did not 

impact serum hIFN-γ concentrations but reduced leukocyte infiltration and apoptosis to the 

livers of humanised NSG mice. Therefore, activation of P2X7 is an important signalling 

pathway involved in GVHD development in this model. 

Chapters 5 and 6 investigated the role of the CD39/CD73/A2A signalling axis in the 

humanised NSG mouse model of GVHD. CD39 and CD73 blockade using αβ-methylene-

ADP (APCP) (Chapter 5) worsened disease through increased weight loss, leukocyte 

infiltration and damage to livers, and serum hIL-2 concentrations. However unlike allogeneic 

mouse models, adenosine receptor blockade with the broad-spectrum antagonist caffeine had 

no impact on disease. This suggests the accumulation of ATP rather than prevention of 

adenosine production is promoting GVHD. Conversely, A2A activation using CGS 21680 

(Chapter 6) had differing effects on disease development. CGS 21680 caused beneficial 

effects through reduced leukocyte infiltration and damage in livers, and serum human tumour 

necrosis factor alpha (hTNF-α) concentrations. CGS 21680 also caused detrimental effects 

through reduced weight gain and regulatory T cell frequencies, and increased serum hIL-6 

concentrations.  
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Finally, Chapter 7 investigated the role of P2X7 in IMQ-induced psoriasis-like inflammation. 

IMQ induced ATP release from keratinocytes in vitro and up-regulated P2X7 expression in 

the skin of these mice. However, pharmacological blockade of P2X7 with the antagonists 

BBG or A804598, or P2X7 deficiency, did not impact IMQ-induced psoriasis-like 

inflammation. 

In conclusion, this thesis demonstrated for the first time that purinergic signalling pathways, 

predominantly the accumulation of ATP and subsequent activation of P2X7, is important in 

disease development in the humanised NSG mouse model of GVHD. Additionally, P2X7 is 

up-regulated in involved skin, but is not essential for the development of IMQ-induced 

psoriasis-like inflammation. 
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Chapter 1: Introduction 

1.1. Inflammatory Diseases 

The immune system provides host defence against disease, protecting an organism from 

infection and death. The immune system incorporates the innate immune system, responsible 

for rapid non-specific responses, and the adaptive immune system, responsible for slower but 

specific responses to pathogens. The immune system promotes inflammation to remove 

pathogens (Janeway Jr and Medzhitov, 2002). The adaptive immune cells; B and T cells, are 

important in developing memory to pathogens and clear them quickly after subsequent 

infection (Flajnik and Kasahara, 2009). However, an imbalance in this process or abnormal 

responses to normal healthy tissues can result in inflammatory diseases. In whole organ 

transplantation, donor organs can be rejected due to the body recognising foreign tissue 

(Starzl et al., 1993). After allogeneic hematopoietic stem cell transplantation (HSCT), 

patients can develop graft-versus-host disease (GVHD). GVHD results from donor (graft) T 

cells mounting a ‘normal’ immune response upon detection of ‘foreign’ antigens, resulting in 

an immune response against an immunocompromised patient (host) (Billingham, 1965). 

Alternatively, inflammatory diseases can result from an exaggerated autoimmune response 

due to genetic or environmental factors, leading to damage to tissues such as the pancreas in 

diabetes (Donath and Shoelson, 2011), or the skin in psoriasis (Chandra et al., 2015).  

 

1.2. HSCT 

HSCT involves the transfer of immunocompetent cells into an immunocompromised patient, 

and is a curative therapy for blood cancers including acute myeloid leukemia (Bortin and 

Rimm, 1978) and acute lymphoblastic leukemia (Buckner et al., 1973). HSCT is also 

considered a curative therapy for other haematological disorders such as aplastic anaemia 
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(which was the first recorded case of bone marrow transplantation (Osgood et al., 1939)), 

sickle cell anaemia (Vermylen et al., 1988) and Wiskott-Aldrich syndrome (Ozsahin et al., 

2008). Currently there are >25,000 HSCTs performed annually worldwide (D'Souza and 

Fretham, 2017). 

HSCT can be performed in one of two ways. Autologous HSCT involves the in vivo 

expansion of healthy cells, or the ex vivo expansion and transplantation of healthy host 

hematopoietic cells into the host after chemo- and/or radio-therapy (McGuire, 1998), leading 

to reconstitution of the host’s immune system. However, due to the nature of some 

haematological malignancies, autologous HSCT is not possible, and instead these patients 

receive allogeneic HSCT. Allogeneic HSCT involves the transplantation of 

immunocompetent cells (graft) from a healthy individual (donor), to another 

immunocompromised recipient (host). Allogeneic HSCT reduces the risk of complications by 

matching donors for histocompatibility, either through using related donors or genetic 

screening (Sheldon and Poulton, 2006). In cancer patients, the aim of allogeneic HSCT is 

two-fold; to reconstitute a functional immune system, and to benefit from the 

graft-versus-tumour (GVT) effect, where donor cells recognise and destroy malignant host 

cells (Weiden et al., 1979). Hereafter, HSCT will refer to allogeneic HSCT unless stated 

otherwise.  

The reconstitution of the immune system provides the patient with protection against 

subsequent infection, while the recognition of ‘foreign’ host tissue forms the basis of the 

GVT effect (Kolb, 2008). However, immunocompetent cells in the graft can also recognise 

and mount an immune response against healthy ‘foreign’ host tissue resulting in GVHD. The 

current, and only, treatment for GVHD is immunosuppression through the use of steroids 

(Auletta and Cooke, 2009). However, immunosuppression to prevent GVHD can lead to 

other problems associated with HSCT. Suppressing the patient’s immune system to a great 
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extent leaves the patient susceptible to subsequent infection or cancer relapse, due to 

immunosuppression leading to a reduced GVT effect (Fefer, 2004). 

1.3. GVHD 

GVHD remains a major problem following HSCT, with a morbidity rate of 50% and a 

mortality rate of 15-30% (Jagasia et al., 2012, Storb et al., 2013). Early GVHD research led 

Billingham (1965) to outline three criteria for GVHD to occur. Firstly, the graft must contain 

immunocompetent cells. Secondly, the host must be immunologically disparate from the 

donor. Finally, the host must be incapable of preventing the inflammatory response of 

transplanted immunocompetent cells against the genetically disparate host.  

Due to difficulties in finding genetically similar donors, in HSCT some patients receive 

mismatched donor cells. In these cases, recognition of ‘foreign’ host tissues and development 

of GVHD is due to mismatches of the major histocompatibility complexes (MHC). MHCs are 

important cell surface receptors present on antigen presenting cells (APCs), where MHC 

class I molecules (MHC-I) interact with CD8 and MHC class II molecules (MHC-II) interact 

with CD4 on T cells (Mellman and Steinman, 2001). In humans, MHC is more commonly 

referred to as human leukocyte antigen (HLA). In humans there are three major (HLA-A, -B, 

and –C) and three minor (HLA-E, -F, and –G) classes of HLA on MHC-I, and three major 

(HLA-DP, -DQ, and –DR) and two minor (HLA-DM, and -DO) classes of HLA on MHC-II 

(Marsh et al., 2002). However, even in HLA-matched HSCT, GVHD can still develop due to 

differences in minor histocompatibility antigens (miHAgs). There are a large number of 

miHAgs (for a recent review see Dzierzak-Mietla et al. (2012)). Most miHAg are present on 

the Y chromosome (chr) and as such sex-matching is also important in HSCT (Miklos et al., 

2005, Wang et al., 2018).  
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As GVHD develops, it can manifest as one of two forms; acute or chronic. Originally acute 

GVHD was classified as occurring within 100 days, and chronic as persisting beyond 100 

days, post-transplantation (Martin et al., 1990, Sullivan et al., 1991). However, subsequent 

research has demonstrated that acute and chronic GVHD have unique aetiologies, and acute 

GVHD can emerge after 100 days post-transplantation (Ferrara et al., 2009). For a recent 

review of chronic GVHD see Zeiser and Blazar (2017b). From this point onwards GVHD 

will refer to acute GVHD.  

GVHD can be characterised by a three step process (Ferrara et al., 1999) (Figure 1.1.). The 

first stage occurs before the transplantation and is characterised by the inflammatory 

environment caused by the underlying condition or the treatment regime. This step involves 

release of pro-inflammatory cytokines including tumour necrosis factor (TNF)-α, interferon 

(IFN)-γ, and interleukin (IL)-6 (Knulst et al., 1994), as well as other signalling molecules 

including damage associated molecular patterns (DAMPs) from damaged and dying cells 

(Wilhelm et al., 2010). The second stage involves antigen processing of MHC or miHAg 

peptides by APCs, and subsequent presentation to T cells, leading to T cell activation. The 

release of cytokines due to initial damage results in up-regulation of MHC molecule 

expression, co-stimulatory molecules and adhesion molecules on APCs (Ferrara et al., 1999). 

APCs interact with T cells through MHC and co-stimulatory molecules to identify “self”. In 

the final stage, T cells migrate to target organs and release additional cytokines to mediate 

inflammatory damage. In particular, CD4+ helper T (Th) cells can differentiate into different 

subtypes and release cytokines, such as Th1 cells release of IFN-γ and IL-2, Th2 cells release 

of IL-4 and IL-13 (Mosmann et al., 1986), or Th17 cells release of IL-17 (Harrington et al., 

2005) to promote GVHD. CD4+ T cells subsequently recruit CD8+ T cells, which can 

produce cytokines as well as release perforin and granzyme to promote inflammation and 

exacerbate GVHD (Graubert et al., 1997). The inflammation and damage caused by GVHD 
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affects one or more organs, with the most commonly affected organ being the skin, which is 

involved in 81% of cases, followed by the small intestine (54%) and the liver (50%) (Martin 

et al., 1990). GVHD is a debilitating disease that manifests according to the involved target 

organs. Skin involvement can manifest as a painful and/or itchy rash that can cover a majority 

of a patient’s body. When the liver is affected the patient will demonstrate jaundice (a 

yellowing of the skin and eyes), while involvement of the gastrointestinal tract can lead to 

abdominal pain, nausea and vomiting (Zeiser and Blazar, 2017a).  

 

 1. The underlying condition or the treatment regime 
involves release of pro inflammatory cytokines and DAMPs such as ATP, from damaged and dying 
cells. 2. DC activation of T cells, leads to T cell differentiation. 3. CD4+ and CD8+ T cell activation 
results in cytokine release, leading to a feed forward loop of inflammation. Abbreviations; ATP, 
adenosine triphosphate, interferon, DC, dendritic cell, IFN, and interleukin , IL tumour necrosis 
factor, MHC, major histocompatibility complex, TGF, tumour growth factor, TNF-α. Adapted from 
(Ferrara et al., 1999). 

 

Figure 1.1. The three step process of GVHD. 
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1.4. Cell Types in GVHD 

GVHD results in inflammatory damage to target organs, promoted through APC activation of 

CD4+ T cells, CD4+ T cell proliferation and subsequent activation of CD8+ T cells, and 

pro-inflammatory cytokine release. Conversely, regulatory T (Treg) cells and natural killer T 

(NKT) cells have been shown to play an anti-inflammatory role, where higher numbers of 

these cells inversely correlates with disease severity (Schneidawind et al., 2014). In fact, ex 

vivo expansion of Treg cells is being investigated as a therapeutic strategy to prevent GVHD 

in HSCT patients (Heinrichs et al., 2016). Additionally, natural killer (NK) cells play a 

controversial role in GVHD development. Some studies have implicated NK cells in GVHD 

development, while others have shown NK cells reduce GVHD severity (Simonetta et al., 

2017). The role of each different immune cell subset in the development of GVHD is 

described further below and summarised in Figure 1.2. 

1.4.1. APCs 

An important part of immunity is the bridging of the innate and adaptive immune systems. 

Originally, alloantigen expression on host epithelium was thought to be required for initiation 

of GVHD, however this is not the case (Teshima et al., 2002). Instead, in the development of 

GVHD, activation of the adaptive immune response is achieved through activation of T and 

B cells by antigen presentation by APCs (Shlomchik et al., 1999). Notably, 

non-hematopoietic APCs do have the ability to initiate GVHD (Koyama et al., 2011), and 

although macrophages can act as professional APCs (Kambayashi and Laufer, 2014), in 

HSCT dendritic cells (DCs) are the main APC responsible for initiating GVHD development 

(Markey et al., 2009).   
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 Activation of naïve T cells by 
DCs results in T cell differentiation depending on i) the type of DC and the signals it provides, and ii) 
the cytokines and other factors present. CD4+ T cells can differentiate to Th1 cells, which exacerbate 
GVHD through pro-inflammatory cytokine release, Th2, Treg or iNKT cells which reduce GVHD 
through anti-inflammatory cytokine release, or Th17 cells which exacerbate or reduce GVHD. CD8+ 
T cells can be activated by DC or CD4+ T cells and exacerbate GVHD through IFN-γ and/or 
perforin/granzyme release. Finally, NK cells can exacerbate GVHD through pro-inflammatory 
cytokine release, or reduce GVHD through reducing Th1 cell activation. Abbreviations: DC, dendritic 
cell, FoxP3, forkhead box P3, IFN-γ, interferon gamma, IL, interleukin, iNKT, invariant natural killer 
T cell, MHC, major histocompatibility complex, NK, natural killer cell, TCR, T cell receptor, TGF-β, 
tumour growth factor beta, TNF-α, tumour necrosis factor alpha, Treg, regulatory T cell. 

 

Figure 1.2. The role of different cell types in GVHD development.  
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1.4.1.1. DCs 

Since their initial discovery and classification as an essential mediator of immunity 

(Banchereau and Steinman, 1998), DCs have been established as professional APCs (Caux et 

al., 1996). Human DCs can often be identified as CD83 expressing cells (Zhou and Tedder, 

1995). DCs express MHC-I and/or MHC-II, and present processed antigen to activate CD8+ 

and/or CD4+ T cells, respectively (Banchereau and Steinman, 1998). DCs can be separated 

into two classes, DC1 cells which activate Th1 cells, and DC2 cells which activate Th2 cells 

(Banchereau et al., 2000). In GVHD, DC1 cells are deemed pro-inflammatory as Th1 cells 

mediate GVHD (Mowat, 1989, Garside et al., 1994, Via and Finkelman, 1993), while DC2 

are anti-inflammatory as Th2 cells are shown to reduce the incidence and severity of GVHD 

(Pan et al., 1995, Pan et al., 1999) (discussed in Section 1.4.2. below). DCs have been further 

characterised and demonstrated to be heterogeneous mix of different subtypes (for a 

comprehensive review see Mildner and Jung (2014)). DCs can be found in human (h) 

peripheral blood mononuclear cells (PBMCs). Following HSCT DCs may be of host and/or 

donor origin, with donor DCs eventually outnumbering host DCs (Auffermann-Gretzinger et 

al., 2002). Early studies demonstrated that host DCs are sufficient to promote GVHD, even in 

small numbers, in allogeneic mouse models (Zhang et al., 2002b, Duffner et al., 2004), yet 

depletion of DCs does not prevent GVHD development (Li et al., 2012). Furthermore, 

reduced DC numbers also correlates to increased prevalence of GVHD in humans (Reddy et 

al., 2004). This is due to some DCs being tolerogenic, which can promote Treg cells and 

reduce GVHD (Sela et al., 2011). Transplantation of ex vivo generated tolerogenic DCs can 

prevent GVHD (Sato et al., 2003). As DCs play major roles in preventing GVHD, 

manipulation of DCs to promote tolerance represents a potential immunotherapy in HSCT 

patients. 
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1.4.2. T Cells 

T cells are an important adaptive immune cell subtype and depending on the subset, mediate 

their effects through release of cytokines and/or perforin and granzymes. T cells are the main 

immune cell type responsible for mediating the inflammatory damage of GVHD (Sprent et 

al., 1975, Korngold and Sprent, 1978, Kernan et al., 1986). T cells can be classified by 

expression of CD3, which along with the T cell receptor (TCR)-α and β chains constitute the 

TCR complex in the majority of T cells (Yanagi et al., 1984, Hedrick et al., 1984) (with 0.5 – 

14% expressing a γδ TCR instead of an αβ TCR (Groh et al., 1989)). T cells can be activated 

by APCs which interact through engagement of the TCR on T cells with MHC molecules 

present on APCs (Harding and Unanue, 1990). T cells also require co-stimulatory signalling 

to be activated, which can be through CD28 on the T cell interacting with CD80 or CD86 

present on the APC (Lafferty and Cunningham, 1975, June et al., 1987).  

All T cells express a TCR, but T cell subsets can be further classified by expression of other 

markers. Conventional T cells can be classified as CD4+ (helper) or CD8+ (cytotoxic) T cells. 

Both CD4+ (Korngold and Sprent, 1982) and CD8+ (Korngold and Sprent, 1985) T cells play 

a role in the development of GVHD. CD4+ T cells were originally divided into two main 

subtypes, T helper 1 (Th1) and T helper 2 (Th2) cells depending on the cytokines they 

produce after activation (Mosmann et al., 1986). Since then other CD4+ subtypes have been 

identified including Th17, Treg, and NKT cells. More information about these cells and the 

role of each subtype is discussed below. 

1.4.2.1. Th1 Cells 

Th1 cells are a CD4+ T cell subset characterised by expression of the transcription factor Tbet 

(Szabo et al., 2000) and release of IFN-γ and IL-2 (Mosmann et al., 1986) (Fig 1.2). The role 

of Th1 cells in GVHD was first characterised by the CD4+ T cell production of IFN-γ 
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(Mowat, 1989, Garside et al., 1994) and IL-2 (Via and Finkelman, 1993) early in GVHD 

development. IFN-γ and IL-2 blockade confirmed the importance of these cytokines in 

promoting GVHD (Mowat, 1989, Via and Finkelman, 1993). Th1 cells have also been shown 

to induce IL-12 production from APCs, which feeds back to further induce Th1 proliferation, 

and inhibit Th2 differentiation, which collectively exacerbates GVHD (Via et al., 1994). 

Further, mice with a “quadruple” deficiency in Th2 cytokine production (i.e. mice genetically 

deficient in IL-4, IL-5, IL-9, and IL-13), exhibit worsened GVHD due to greater Th1 cell 

differentiation (Tawara et al., 2008). As well as releasing cytokines to promote damage, Th1 

cells can damage target tissues through release of Fas ligand (Baker et al., 1996, Kataoka et 

al., 2001). Additionally, Th1 cells also recruit CD8+ T cells to exert damage to target organs, 

as discussed below (Section 1.3.2.6). In an allogeneic mouse model it was shown that Th1 

cells preferentially cause GVHD in the liver and gastrointestinal tract (Yi et al., 2009), whilst 

in a humanised mouse model of GVHD, human Th1 cells generated ex vivo have been shown 

to drive GVHD development (Amarnath et al., 2010).  

Due to the role of Th1 cells and their cytokine production, current treatments for GVHD 

include the use of cyclosporine and tacrolimus, which target Th1 responses by reducing IL-2 

production, and rapamycin, which reduces T cell sensitivity to IL-2 (Khanna, 2000, Antin et 

al., 2003). However, the role of IFN-γ in GVHD remains controversial (Yang et al., 2005b), 

as IFN-γ has also shown to have protective roles in GVHD in some models (Brok et al., 

1993). Therefore, IFN-γ blockade itself is not considered an efficacious therapy in HSCT 

recipients. 

1.4.2.2. Th2 Cells 

Th2 cells are a CD4+ T cell subset characterised by the expression of the transcription factor 

Gata-3 (Zheng and Flavell, 1997), and release of the cytokines IL-4, IL-5 and IL-13 

(Mosmann et al., 1986). Originally, DC2 cell activation of Th2 cells was shown to reduce the 
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incidence and severity of GVHD (Pan et al., 1995, Pan et al., 1999). However, subsequent 

studies demonstrated genetic deficiency (Murphy et al., 1998) or blockade (Ushiyama et al., 

1995) of IL-4 could prevent disease development in allogeneic mouse models of GVHD. Th2 

cells have since been shown to exacerbate GVHD, and specifically exert inflammatory 

damage to the liver and skin, while inflammatory damage to the intestines can be mediated by 

either Th1 or Th2 cells (Nikolic et al., 2000).  

1.4.2.3. Th17 Cells 

Th17 cells are a functionally distinct CD4+ T cell subset characterised by the expression of 

the transcription factor RAR-related orphan receptor gamma (RORγt) (Ivanov et al., 2006) 

and release of IL-17A and IL-17F (Harrington et al., 2005), and IL-22 (Chung et al., 2006) 

(Fig 1.1). Th17 cells have been implicated in GVHD development, where they predominantly 

exert pro-inflammatory effects; however some studies describe a beneficial effect, so the role 

of Th17 cells in GVHD remains controversial. 

Th17 cells were proposed to exacerbate GVHD, as transfer of IL-17 deficient CD4+ T cells 

delayed, but did not prevent GVHD in an allogeneic mouse model of GVHD (Kappel et al., 

2009). Supporting this observed pro-inflammatory role, transplantation of in vitro 

differentiated Th17 cells mediated GVHD in an allogeneic mouse model (Carlson et al., 

2009), with inflammatory damage most evident in the skin (Carlson et al., 2009, Hill et al., 

2010). Additionally, human Th17 cells exacerbate GVHD in a humanised mouse model due 

to IL-17 and IFN-γ production (Delens et al., 2018). Blockade of the Janus-associated kinase 

(JAK)2, signal transducer and activator of transcription (STAT)3 pathway prevents Th17 

generation (Betts et al., 2014) and reduces GVHD severity in humanised mice (Betts et al., 

2015). Alternatively, Th17 cell-derived IL-22, exacerbates GVHD through a reduction in 

Treg expansion in target organs and increased CD8+ cell infiltration (Couturier et al., 2013). 

Genetic deficiency of IL-22 in donor T cells (Couturier et al., 2013), or pharmacological 
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blockade with an anti-IL-22 antibody (Wu et al., 2018) attenuates GVHD through increased 

Treg cells. As well as reducing Treg cell numbers, in both allogeneic mouse models of 

GVHD and in HSCT patients Th17 cells exert their pro-inflammatory effects in co-operation 

with Th1 cells (Carlson et al., 2009). In allogeneic mouse models of GVHD, specific 

blockade of the transcription factors Tbet and RORγt (i.e. simultaneously blocking Th1 and 

Th17 differentiation), but not blockade of RORγt alone, can prevent GVHD development (Yu 

et al., 2011). Additionally, the use of an anti-IL-12/23p40 antibody can reduce disease 

severity through decreased Th1 and Th17 cell numbers in target organs in an allogeneic 

mouse model (Wu et al., 2015) and delay GVHD onset in HSCT patients (Pidala et al., 

2017). 

The role of Th17 cells in promoting GVHD is confounded by some studies, which describe 

positive benefits of IL-17 and/or Th17 cells. Absence of Th17 cells leads to increased GVHD 

severity, due to augmented Th1 cell activation and differentiation (Yi et al., 2008). 

Additionally, recipient IL-17A was recently shown to be important in preventing intestinal 

GVHD (Varelias et al., 2017). Finally, IL-22 deficiency in recipients resulted in more severe 

GVHD (Hanash et al., 2012). A recent study by Cai et al. (2018) demonstrated that Th17 

cells increase Th1 cell responses, while IL-17 downregulates Th1 cell infiltration of target 

organs in GVHD, demonstrating individual roles of Th17 cells and IL-17 in an allogeneic 

mouse model of GVHD. Furthermore, IL-17 deficient donor T cells reduce GVHD, but IL-17 

deficiency of all cells in the graft exacerbates GVHD, suggesting Th17 cells exacerbate 

GVHD, but systemic IL-17 plays a protective role. 

Therefore, the role of Th17 cells in allogeneic mouse models can be confounded by the role 

of IL-17, which notably can also be produced by γδ T cells (Sutton et al., 2009), NKT cells 

(Rachitskaya et al., 2008), as well as mast cells and neutrophils (Lin et al., 2011). Thus, the 

role of Th17 cells and IL-17 requires further elucidation in HSCT patients.  
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1.4.2.4. Treg Cells 

Treg cells are characterised by the expression of the transcription factor Forkhead box protein 

3 (FoxP3) (Hori et al., 2003). However, FoxP3 can be expressed by subsets of CD4+ T cells 

other than Treg cells (Morgan et al., 2005). Thus, Treg cells can alternatively be identified by 

high expression of CD25 and low expression of CD127 (Fazekas de St Groth et al., 2011). 

Treg cells differ from other CD4+ T cells subsets as they predominantly suppress immune 

responses (Itoh et al., 1999). This suppression is mediated by release of IL-10 and tumour 

growth factor (TGF)-β (Groux et al., 1997), and/or direct interaction with conventional T 

cells (Thornton and Shevach, 1998). Treg cells may also exert anti-inflammatory effects 

through perforin or granzyme release to cause apoptosis of inflammatory T cell subsets 

(Gondek et al., 2005). However, Treg cells can also exert anti-inflammatory effects by 

production of adenosine (Deaglio et al., 2007), which can subsequently activate adenosine 

receptors to promote the release of anti-inflammatory cytokines (Haskó et al., 2008).  

Treg cells play important roles in preventing development of GVHD. In allogeneic mouse 

models, transplantation of donor Treg cells can limit the development of GVHD (Hoffmann 

et al., 2002) through suppression of alloreactive T cells (Edinger et al., 2003). Moreover, 

transplantation of ex vivo expanded Treg cells can reduce GVHD development in humanised 

mouse models (Cao et al., 2009, Hannon et al., 2014). In patients, FoxP3 expression on 

circulating PBMCs inversely correlates with GVHD severity in HSCT patients (Miura et al., 

2004), and higher numbers of donor Treg cells present in peripheral blood grafts prior to 

transplantation reduces the risk of GVHD development in patients (Rezvani et al., 2006). 

Supporting this, GVHD severity inversely correlates with numbers of Treg cells in the 

intestine (Rieger et al., 2006) and skin (Fondi et al., 2009) of patients with GVHD. 

Collectively, these findings have led to the potential use of expanded Treg cells as a 

preventative therapy for GVHD in HSCT patients (Heinrichs et al., 2016). Unfortunately, the 
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potential of Treg cell transplantation as a therapy to prevent GVHD is limited by the 

propensity of Tregs to revert to a pro-inflammatory phenotype in inflammatory environments 

(Kim et al., 2009, Hanidziar and Koulmanda, 2010). 

1.4.2.5. Natural Killer T Cells 

NKT cells are a subtype of T cell which were originally characterised by the expression of 

NK (CD161) and T cell (αβ-TCR) markers (Makino et al., 1995). Further research has led to 

the characterisation of NKT cells to be any CD1d-restricted T cell, recognising the 

non-classical MHC CD1d (Bendelac et al., 1995). NKT cells can be one of three subtypes; 

Type 1, Type 2, and NKT-like cells (Godfrey et al., 2004). Few studies have investigated the 

latter two subtypes in GVHD. Donor Type 2 cells (CD1d-restricted cells not expressing the 

invariant TCR) suppress GVHD development (Kim et al., 2007). Conversely activation of 

NKT-like cells in in vitro cultures suggests they may worsen GVHD (Wang et al., 2008), but 

this has not been further investigated. However, type 1 NKT, or invariant NKT (iNKT), cells 

are the most commonly studied CD1d-restriced subset and the role of iNKT cells in GVHD 

has been elucidated. iNKT cells express an invariant TCR (Vα14-Jα18 in mice, and Vα24-

Jα18 in humans) (Porcelli et al., 1993), and can be further subdivided based on the cytokine 

production of iNKT1, iNKT2 and iNKT17 cells reflecting Th1, Th2 and Th17 cells, 

respectively (Chang et al., 2012, Lee et al., 2013). Furthermore, there is recent evidence of 

another two iNKT cell subsets; a “follicular helper” T cell like-NK cell (iNKTFH) and an 

IL-10 secreting iNKT cell (iNKT10) (Chang et al., 2012, Lynch et al., 2012, Lynch et al., 

2015). However, neither of these cells have been fully characterised, nor has their role in 

GVHD been investigated.  

In general, NKT cells play a role in GVHD, mostly by suppressing GVHD development. In 

earlier studies, peripheral NKT cells (identified by expression of CD161 and αβ-TCR) were 

shown to have a suppressive role in mouse models of HSCT (Zeng et al., 1999, Lan et al., 
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2001). Mice lacking iNKT1 cells due to a genetic deficiency of the TCR subunit Jα18 

demonstrated more severe GVHD (Haraguchi et al., 2005). Co-transplantation of in vitro 

induced (Kuwatani et al., 2006) or ex vivo expanded donor (Haraguchi et al., 2005, Yang et 

al., 2010) or third-party (Schneidawind et al., 2014) iNKT1 cells can suppress disease in 

allogeneic mouse models of GVHD. The suppressive ability of iNKT cells is through 

promoting Th2 responses (Hashimoto et al., 2005, Margalit et al., 2005) or up-regulation of 

Treg cell responses (Pillai et al., 2009, Vela-Ojeda et al., 2010, Schneidawind et al., 2015). In 

patients, lower numbers of peripheral blood iNKT cells also correlate with worsened GVHD 

(Crough et al., 2004, Haraguchi et al., 2004). 

1.4.2.6. CD8+ (Cytotoxic) T Cells 

CD8+ T cells are characterised by expression of the CD8 molecule, which specifically binds 

to MHC-I molecules on APCs. Similar to CD4+ T cells, CD8+ T cells can produce cytokines, 

predominantly IFN-γ, to exert pro-inflammatory effects (Szabo et al., 2002). CD8+ T cells are 

also known as cytotoxic T cells due to their ability to exert pro-inflammatory effects through 

the release of perforin and granzymes (Pearce et al., 2003).  

In GVHD, CD8+ T cells play important roles in causing or exacerbating the inflammatory 

damage. Whilst, CD4+ T cells initiate disease, GVHD is exacerbated by CD8+ T cell 

expansion (Rus et al., 1995). This was supported by demonstrating transplantation of MHC-I 

deficient donor cells led to reduced GVHD severity in allogeneic (Matte et al., 2004) and 

humanised (King et al., 2009) mouse models. Infiltration of CD8+ T cells into the portal areas 

of the liver (Murai et al., 1999) and into Peyer’s patches in the intestines (Murai et al., 2003) 

promotes GVHD in these respective organs. Furthermore, CD44lo CD62Lhi CD8+ T cells, a 

self-renewing CD8+ T cell subset emerging early in GVHD pathogenesis, generates and 

sustains memory and effector CD8+ T cells to further promote GVHD (Zhang et al., 2005). 

Whilst CD8+ T cells are known to exert inflammatory damage in GVHD through perforin and 
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granzyme release, CD8+ T cells also produce IFN-γ to promote inflammation in GVHD (Rus 

et al., 1995). Alternatively, a role for an IL-17-producing CD8+ T cell subset (Tc17) in 

GVHD has also been identified. Similar to Th17 cells, Tc17 cells exert pro-inflammatory 

effects through production of IL-17 to promote GVHD in an allogeneic mouse model of 

GVHD (Gartlan et al., 2015). 

1.4.3. Natural Killer Cells 

NK cells lack CD3 expression, but express CD56 (Lanier et al., 1989). Similar to CD8+ T 

cells, NK cells can exert their effects through production of cytokines or release of perforin 

and granzyme (Smyth et al., 2005). Alternatively, NK cells can exert their effects through 

antibody-dependent cell-mediated cytotoxicity (Katz et al., 1987).  

NK cells are another important cell type implicated in GVHD development, but whether 

these cells play a detrimental or beneficial role is still controversial. Early studies using cell 

activity assays and immunophenotyping demonstrated donor NK cells were present in GVHD 

target organs in allogeneic mouse models, suggesting NK cells exacerbate GVHD (Guillen et 

al., 1986, Ferrara et al., 1989). In allogeneic mouse models of GVHD, transfer of cells with a 

genetic mutation leading to NK cell deficiency failed to cause GVHD, supporting the idea 

that NK cells exacerbate GVHD (Ghayur et al., 1987). In a humanised SCID mouse model, 

transfer of activated NK cells, which produce IFN-γ and TNF-α, exacerbated GVHD (Xun et 

al., 1993). In patients, higher numbers of NK cells are found in the liver (Dilly and Sloane, 

1985), intestines (Roy et al., 1993) and skin (Acevedo et al., 1991) and NK cells correlate 

with GVHD severity (Dokhelar et al., 1981).  

Subsequent research has also identified a beneficial role of NK cells in GVHD. In allogeneic 

mouse models of GVHD, transfer of NK cells alone does not induce GVHD, whilst co-

transfer with splenocytes prevents GVHD (Murphy et al., 1992). NK cells prevent GVHD 
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development by inhibiting T cell proliferation and depleting APCs (Ruggeri et al., 2002). In 

patients, higher numbers of alloreactive NK cells inversely correlates with GVHD 

development (Ruggeri et al., 2007, Tanaka et al., 2012a, Kim et al., 2016b).  

 

1.5. Models of GVHD 

Seminal studies of GVHD were conducted in canines. Inflammatory damage to the GVHD 

target organs; liver, gastrointestinal tract and skin, demonstrated damage was greater in dogs 

transplanted with tissue that was genetically mismatched for dog leukocyte antigens (Storb et 

al., 1974, Kolb et al., 1979), which is equivalent to HLA mismatch in humans. Canines also 

offered useful models for the development of immunosuppression, which was the first 

therapy for GVHD (Kolb et al., 1973). Although canines offer a good model of GVHD 

(Markey et al., 2014), the majority of current studies are conducted using mice. Mice afford 

useful models to study human disease as, like dogs, they are genetically similar to humans, 

but are much easier and cheaper to maintain, have shorter breeding times and allow the use of 

transgenic variants and well-established inbred strains. Both allogeneic and humanised mouse 

models of GVHD have been established and will be discussed below. 

1.5.1. Allogeneic Mouse Models of GVHD 

Similar to humans, GVHD in allogeneic mouse models can emerge due to differences in 

either MHC or miHAgs, depending on the donor and recipient strains. In mice, MHC 

antigens are known as H2, with each mouse strain exhibiting a unique haplotype, denoted by 

a subscript letter. Complete MHC-mismatch models of allogeneic GVHD involve the transfer 

of bone marrow from one strain of mouse to another with a completely different MHC 

haplotype (denoted by H2x where x is the haplotype).  
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The most common complete MHC-mismatch model of allogeneic GVHD involves the 

transfer of bone marrow and splenocytes from C57BL/6 mice to BALB/c mice (H2b to H2d) 

(van Leeuwen et al., 2002). Other complete mismatch models include the transfer of bone 

marrow and splenocytes from C3H/HeJ to C57BL/6 mice (H2k to H2b) (Blazar et al., 1991), 

and C57BL/6 to B10.BR mice (H2b to H2k) (Vallera et al., 1981). These complete MHC-

mismatch models were used to elucidate that T cells were the major immune cell that drives 

GVHD inflammation (Sprent et al., 1975, Korngold and Sprent, 1978), and are useful models 

to study HLA-mismatch transplants in HSCT patients, such as in the cases of unrelated 

donors. 

Other allogeneic mouse models of GVHD include haploidentical models, which involve 

transplantation where one H2 allele is identical, but the other differs. Some examples of these 

models include the C57BL/6 to B6C3F1 (H2b to H2k/b) (Kanamaru et al., 1984), and the 

C57BL/6 to B6D2F1 (H2b to H2b/d) (Pickel and Hoffmann, 1977), and are relevant to 

transplants in HSCT patients when there is a partial HLA-mismatch. Finally, there are 

allogeneic mouse models of GVHD where the H2 is a complete match, but GVHD arises due 

to miHAgs. Some examples of these models include the B10.D2 to BALB/c mice (H2d to 

H2d) (Korngold and Sprent, 1987) and C57BL/6 to BALB.b (H2b to H2b) mice (Berger et al., 

1994). These models are useful to elucidate miHAgs involved in GVHD, and reflect the 

development of GVHD in HSCT patients who receive an HLA-matched transplant. 

Allogeneic mouse models of GVHD have been instrumental in elucidating GVHD 

pathophysiological mechanisms and derivation of early therapies for GVHD. Therapeutic 

targets investigated in these models aim to target a specific part of the three-step progression 

of GVHD. This includes altering the conditioning regime by way of non-myeloablative, or 

reduced intensity, conditioning to reduce inflammatory cytokines and damage (Aoudjhane et 

al., 2005). Alternatively therapies target the characteristic pro-inflammatory cytokine storm 
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such as TNF-α blockade (Hill et al., 1999), or more recently hIL-6 blockade (Tawara et al., 

2011). Other therapies aim to prevent the activation and proliferation of T cells, such as the 

use of post-transplant cyclophosphamide to deplete proliferating cells (Ganguly et al., 2014), 

and the development of cellular therapies such as transfer of Treg cells to suppress activated 

cells (Hoffmann et al., 2002, Edinger et al., 2003), which have since been translated to the 

clinic (Couriel et al., 2009, Kanakry et al., 2014, Di Ianni et al., 2011).  

Allogeneic mouse models of GVHD are not without disadvantages. Besides the large 

differences in immune systems between mice and humans (Mestas and Hughes, 2004, 

Schroeder and DiPersio, 2011), mice used in allogeneic models of GVHD have low genetic 

diversity due to inbreeding, and therefore donors have very specific genetic disparities to 

recipients. Furthermore, mice are usually housed under pathogen-free conditions, unlike 

HSCT patients (Zeiser and Blazar, 2016). Finally, allogeneic mouse models transfer bone 

marrow cells supplemented with splenocytes as a source of T cells, whilst in humans grafts 

often contain peripheral T cells, which will differ in function to those found in the spleen 

(Zeiser and Blazar, 2016). Therefore, to address these disadvantages and better study human 

immune responses in vivo, numerous humanised mouse models have been developed. 

1.5.2. Humanised Mouse Models of GVHD 

Humanised mouse models of GVHD utilise mice with genetic abnormalities or deficiencies 

to allow engraftment of human cells, which subsequently mediate GVHD in these animals. 

Each model utilises a unique strain of mouse that receives a transfer of human cells, most 

commonly hPBMCs. The CB17-SCID (scid/scid) mouse possesses the severe combined 

immunodeficiency (SCID) mutation on the protein kinase, DNA-activated, catalytic 

polypeptide (Prkdcscid) which prevents V(D)J recombination leading to impaired B and T cell 

development (Bosma et al., 1983). This model allows engraftment of human cells, however 
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after hPBMC injection engraftment of human cells in these mice is low due to spontaneous 

development of functional murine B and T cells, and constitutive NK cell activity (Greiner et 

al., 1998). Additionally, the lack of diverse human T cell development in these mice limits 

the use of this model for investigating potential therapies (Garcia et al., 1997). Subsequently, 

breeding of CB17-SCID mice with NOD mice allowed the development of the NOD/SCID 

mouse strain (Shultz et al., 1995), with improved human cell engraftment due to NOD mice 

possessing a polymorphism in the Sirpa gene, which promotes “phagocytic tolerance” (i.e. 

reduces macrophage clearance) of human leukocytes (Yamauchi et al., 2013). However, 

human cell engraftment is still low in these mice, due to NK cells, whilst the lifespan of these 

mice is limited due to lymphoma development (Shultz et al., 1995). Subsequently, the NOD-

SCID-IL-2 receptor γ common chain null (IL-2Rγnull) (NSG) mouse which lacks IL-2Rγ and 

subsequently lacks functional T, B and NK cells, allowing greater human cell engraftment 

was developed (Ito et al., 2002, Shultz et al., 2005). 

1.5.3. The Humanised NSG Mouse Model of GVHD 

Injection of NSG mice with hPBMCs can establish a humanised NSG mouse model of 

GVHD (King et al., 2009) (Figure 1.3). There are variations of this model, which differ by 

the number and source of hPBMCs injected and the route of injection (Hogenes et al., 2014, 

De La Rochere et al., 2018). Whilst these various models exist, the humanised NSG mouse 

model, established by injection of hPBMCs provides a robust model of GVHD (Ali et al., 

2012). Accordingly, from this point forward the humanised NSG mouse model will refer to 

NSG mice injected with hPBMCs (Figure 1.3).  

Within three to eight weeks following injection of hPBMCs, NSG mice develop phenotypical 

signs of GVHD. These signs include weight loss, hunching, reduced activity, fur ruffling and 

skin denudation, as first described by Cooke et al. (1996) in allogeneic mouse models. 
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 Immunodeficient NSG mice are injected with 
freshly isolated hPBMCs and subsequently develop GVHD. GVHD can be assessed by clinical 
scoring as indicated. Abbreviations: GVHD, graft-versus-host disease, h, human, NSG, non-obese 
diabetic-severe combined immunodeficient-interleukin-2 receptor γ common chain null, PBMC, 
peripheral blood mononuclear cell. 

 

King et al. (2008) demonstrated that NSG mice rapidly engraft hPBMCs within a matter of 

weeks following injection with 5 x 106 hPBMCs/mouse, although 100% engraftment is 

typically observed with injection of ≥10 x 106 hPBMCs/mouse. Indeed, 10 x 106 

hPBMCs/mouse is sufficient for 100% engraftment, with no significantly greater engraftment 

after injection of 20 x 106 or 50 x 106 hPBMCs/mouse (King et al., 2008).  

The main GVHD target organs in humans; the liver, gut and skin, are similarly affected in 

humanised NSG mice, and leukocyte infiltration and inflammation reflects GVHD 

development as in HSCT patients. The liver demonstrates leukocyte infiltration, concentrated 

around portal triads (King et al., 2009), with both portal triads and parenchymal tissue 

damaged (King et al., 2009, Ehx et al., 2017). The gut also demonstrates leukocyte 

infiltration (King et al., 2009, Nakauchi et al., 2015) as well as apoptosis (Nakauchi et al., 

2015). Finally, the skin demonstrates leukocyte infiltration within the dermis and epidermis 

(King et al., 2009). The original study by King et al. (2009) demonstrated that infiltrating 

leukocytes are of human origin, staining for hCD45+. King et al. (2009) also demonstrated 

that the majority of engrafted human leukocytes are T cells, and immunohistochemical 

analysis of organs using a hCD3 antibody demonstrated human T cells are the main 

infiltrating leukocyte in the liver (Ehx et al., 2017), and gut (Nakauchi et al., 2015). 

Figure 1.3. The humanised NSG mouse model of GVHD.  
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Immunohistochemical staining of skin has shown hCD45 cells infiltration (King et al., 2009) 

but the identity of these human leukocytes is unknown. However, target organ specificity of 

effector memory T cells that express tissue-specific homing receptors, such as cutaneous 

lymphocyte antigen have been shown to home to the skin in this model (Ali et al., 2012). 

King et al. (2009) demonstrated that hCD8+ T cells drive GVHD development, as deletion of 

MHC-I molecules significantly delayed disease, compared to MHC-I deficiency suggesting 

CD8+ T cells are important for promoting more rapid GVHD. However, deletion of MHC-II 

also delays GVHD (King et al., 2009). Moreover, a subsequent study by Covassin et al. 

(2011) demonstrated CD4+ T cells are sufficient to mediate disease as injection of CD4+ T 

cells alone induces GVHD in humanised NSG mice. Activation of human T cells relies on 

co-stimulatory signals (Lafferty and Cunningham, 1975), and human CD28 can recognise 

murine B7.2 to act as a co-stimulatory signal (Freeman et al., 1993), which is required for T 

cell activation in humanised NSG mice (Søndergaard et al., 2013). However, whether murine 

MHC is responsible for antigen presentation to human T cells, or whether murine MHC is the 

antigen itself remains to be elucidated. Additionally, human Treg cell numbers inversely 

correlate to GVHD severity and can prolong survival in humanised NSG mice (Bruck et al., 

2013, Achita et al., 2018). This parallels the higher numbers of donor Treg cells correlating 

to reduced risk of GVHD development in HSCT patients (Rezvani et al., 2006). However, 

stable long-term engraftment of Treg cells in humanised NSG mice requires expression of 

human IL-2 (Abraham et al., 2012).   

Human T cells migrate to target organs and produce cytokines to exert inflammatory damage, 

with cytokines implicated in GVHD in HSCT patients also implicated in humanised NSG 

mouse models. Serum hTNF-α concentrations are increased as soon as 24 hours post-hPBMC 

injection and pharmacological blockade of TNF-α can prevent GVHD development in 

humanised NSG mice (King et al., 2009). Similarly, serum human IL-6 is also increased with 
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GVHD development in humanised mice (Amarnath et al., 2010), and blockade can reduce 

disease severity (Gu et al., 2016a). Humanised NSG mice demonstrate increased levels of 

hIL-2 and hIFN-γ (Abraham et al., 2017), and while blockade of these cytokines has not been 

investigated, successful treatments that reduce and/or prevent GVHD have correlated with 

reduced serum hIFN-γ (Amarnath et al., 2011, Gregoire-Gauthier et al., 2012) or hIL-2 

(Abraham et al., 2012, Gregoire-Gauthier et al., 2012). Furthermore, whilst hIL-17 blockade 

has not been investigated, reduced serum hIL-17 correlates with successful treatments that 

reduce and/or prevent GVHD (Gregoire-Gauthier et al., 2012). In contrast, IL-10, which 

correlates to reduced disease severity in humans (Holler et al., 2000), has been shown to 

exacerbate GVHD in humanised NSG mice, but can act synergistically with hIL-2 to delay 

disease (Abraham et al., 2015). 

The humanised NSG mouse model of GVHD can be utilised as a preclinical mouse model of 

GVHD, and therapies that have shown promise in both this model and clinical trials in HSCT 

patients are discussed briefly below and summarised in Table 1.1. Therapies may aim to 

prevent inflammation by targeting cytokines or T cells. TNF-α blockade using the humanised 

monoclonal antibody (mAb) Etanercept delayed GVHD onset, but did not prevent disease 

development in humanised NSG mice (King et al., 2009) or humans (Choi et al., 2012b, 

Gatza et al., 2014). Furthermore, although TNF-α is an important pro-inflammatory cytokine 

in the innate immune system (Serbina et al., 2003), TNF-α blockade may leave HSCT 

recipients more susceptible to infection (Choi et al., 2012b).  

Other therapies aim to reduce GVHD by preventing T cells activation, proliferation or 

migration to target organs. The use of post-transplant cyclophosphamide depletes alloreactive 

T cells, and reduces GVHD severity in humanised NSG mouse models (Kanakry et al., 

2013a). This therapy is currently being investigated in HSCT patients, but can cause 

infection-independent fever (O’Donnell et al., 2015). Alternatively, injection of 
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immunosuppressive cell types such as Treg cells at the time of hPBMC-injection reduces 

GVHD in humanised NSG mice (Hannon et al., 2014, Achita et al., 2018) and is being 

investigated as a potential therapy in HSCT patients. However, Treg cells revert to a 

pro-inflammatory phenotype in inflammatory environments (Kim et al., 2009, Hanidziar and 

Koulmanda, 2010), which may limit their use as a therapy for GVHD in HSCT patients. The 

addition of mesenchymal stem cells, as a suppressive cell type, reduces inflammatory damage 

of GVHD in humanised NSG mice (Bruck et al., 2013, Huang et al., 2017), but fails to 

reduce GVHD in HSCT patients (Galipeau, 2013). Finally, CCR5 blockade prevents T cells 

tracking to target organs in humanised NSG mice (Burger et al., 2017a), but may be limited 

in humans as CCR5 antagonists can cause hepatotoxicity (Kim et al., 2016a). Therefore, 

whilst therapies for GVHD are currently being tested in the clinic, these therapies each have 

limitations, and there is a need for alternative strategies and targets. 

The purinergic signalling system plays a role in immunity and has been implicated in 

numerous inflammatory disorders (see Section 1.10.). Whilst purinergic signalling has been 

implicated in allogeneic mouse models of GVHD (see Section 1.10.1.), the role of purinergic 

signalling has not been investigated in humanised mouse models of GVHD and is limited in 

humans. Due to the importance of purinergic signalling in immunity and inflammation, this 

signalling system has also been implicated in other inflammatory diseases such as psoriasis. 

Therefore a brief overview of psoriasis will be presented.  
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currently in clinical trials. Abbreviations; CCR5, C-C chemokine receptor, IL, interleukin, JAK, 
Janus associated kinase, mAb, monoclonal antibody, NSG, non-obese diabetic-severe combined 
immunodeficient-interleukin-2 receptor γ common chain null, Treg, regulatory T cell 

Therapeutic 
strategy in 
humanised 
NSG model 

Reference(s) 
Therapeutic 

strategy in clinical 
trial(s) 

Current 
status of 
clinical 
trial(s)* 

Reference(s) 

TNF-α blockade 
(Etanercept 
anti-TNF-α) 

(King et al., 2009) 

 
Etanercept (anti TNF-α) 
 
Infliximab (anti TNF-α) 
 

 
Completed 
 
Completed 
 

 
(Choi et al., 2012b, 
Gatza et al., 2014) 
 
 

Regulatory T cell 
co-transplantation 

(Hannon et al., 
2014, Achita et al., 
2018) 
 

Donor Treg cell 
infusion 
 
Ex vivo expansion 

Recruiting, 
Suspended, 
Unknown 
Recruiting 

 
(Trzonkowski et al., 
2009, Brunstein et al., 
2011) 
 

Post-transplant 
cyclophosphamide 

(Kanakry et al., 
2013a) 

Post-transplant 
cyclophosphamide 

Active, 
Completed, 
Recruiting 

 
(O’Donnell et al., 
2015) 
 

CCR5 blockade 
(Burger et al., 
2017b) 

PRO 140 (anti-CCR5 
mAb) 

Recruiting 
 
 
 

Mesenchymal 
stem cells 

(Bruck et al., 2013, 
Huang et al., 2017) 

Ex vivo expansion  

Active, 
Recruiting, 
Suspended, 
Unknown 

 
(Galipeau, 2013) 
 
 

IL-6 blockade 
(Tocilizumab 
(anti-IL-6R)) 

(Gu et al., 2016b) 
Tocilizumab 
(anti-IL-6R) 

Recruiting, 
Terminated, 
Withdrawn 

Results not published 
 

JAK1/2 blockade 
(Betts et al., 2017, 
Betts et al., 2018) 

Multiple mAb; 
Baricitinib (JAK1/2) 
Itacitinib (JAK1) 
Ruxolitinib (JAK1/2) 

 
Recruiting 
 
Recruiting 
Recruiting 
 

 
 
 
 
 
 

*According to clinicaltrials.gov (last accessed 16/11/2018) 

 

Table 1.1. Therapeutic strategies investigated in the humanised NSG mouse model of GVHD  
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1.6. Psoriasis 

Psoriasis affects 1-3% of the general population of Western countries (Lebwohl et al., 2014), 

and is estimated to cost the United States of America healthcare system alone $112 billion 

per year (Brezinski et al., 2015). Psoriasis is an autoimmune disease of the skin, which 

manifests as red or pink areas of skin covered in white plaque-like lesions of dry flaky skin, 

present on areas of the body including the scalp, elbows, knees and lower back (Schön and 

Boehncke, 2005). Whilst the cause of psoriasis is still unknown, the plaque-like lesions form 

due to an autoimmune response leading to inflammation mediated by T cell activation by 

APCs, leading to hyper-proliferation of keratinocytes (Schön et al., 2006) and recruitment of 

neutrophils (Schön et al., 2017).  

The typical plaque-like lesions as described above are indicative of psoriasis vulgaris, which 

is the predominant form of psoriasis constituting ~90% of all cases (Griffiths and Barker, 

2007). Less common is pustular psoriasis, where plaques also swell with pus, as opposed to 

the dry flaky skin of psoriasis vulgaris (Schön and Boehncke, 2005, Nestle et al., 2009b), or 

guttate psoriasis, which emerges after an infection such as tonsillitis and resolves within a 

few months of onset (Griffiths and Barker, 2007). However, a third of guttate psoriasis 

patients subsequently develop psoriasis vulgaris (Martin et al., 1996). If any of these forms 

are allowed to progress, they can form psoriasis erythroderma, which covers the entire body 

(Nestle et al., 2009b). 

The exact cause of psoriasis is still unknown, but genetic susceptibility is implicated in 

psoriasis development (Liang et al., 2017). A susceptibility locus, termed PSORS1 is in the 

MHC region on chr 6 (6p21) (Balendran et al., 1999) and is associated with up to 50% of 

psoriasis cases (Asumalahti et al., 2002). Within this gene, the MHC-I molecule HLA-C, and 

the specific allele HLA-Cw*0602 have been implicated as causative factors, with patients 
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homozygous for this allele at a greater risk of developing psoriasis (Gudjonsson et al., 2003). 

However there are also a number of other susceptibility loci including PSORS2 (chr 17q) 

(Tomfohrde et al., 1994), PSORS3 (chr 4p) (Matthews et al., 1996), PSORS4 (chr 4q) (de Cid 

et al., 2009), PSORS5 (chr 3q) (Vasilopoulos et al., 2008), PSORS6 (chr 19p) (Lee et al., 

2000), PSORS7 (chr 1p) (Veal et al., 2001), PSORS8 (chr 16q) (Nair et al., 1997), PSORS9 

(chr 4q) (Zhang et al., 2002a) and PSORS10 (chr 18p) (Asumalahti et al., 2003).  

 

1.7. Cell Types in Psoriasis 

The characteristic plaque-like lesions of psoriasis emerge due to the pro-inflammatory 

environment mediated by different T cell subsets, predominantly Th1, Th17, and CD8+ T 

cells. Activation of T cells by APCs causes hyper-proliferation of keratinocytes and 

recruitment of neutrophils to further promote inflammation.  

The CD4+ subsets Th1 and Th17, and CD8+ T cells are all important mediators of psoriasis. 

The majority of T cells in the serum and psoriatic lesions are Th1 and CD8+ T cells, and the 

high levels of TNF-α and IFN-γ in psoriatic lesions and serum of psoriasis patients suggests 

psoriasis is a Th1 and CD8+ T cell mediated disease (Schlaak et al., 1994, Austin et al., 

1999). IFN-γ is an important pro-inflammatory cytokine in psoriasis (Wei et al., 1999, Haider 

et al., 2008) which can cause hyperproliferation of keratinocytes (Bata-Csorgo et al., 1995). 

Further, IFN-γ production by Th1 cells can lead to a feedback loop to activate APCs and 

promote Th17 development (Kryczek et al., 2008). After the discovery and characterisation 

of Th17 cells (Harrington et al., 2005), these cells were implicated in the pathogenesis of 

psoriasis due to their activation by the pro-inflammatory cytokine IL-23 (Piskin et al., 2006). 

IL-23 is upregulated in psoriatic lesions (Piskin et al., 2006) and is essential for activation of 

Th17 cells (McGeachy et al., 2009), which release IL-17 to promote inflammation in this 
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disease (Tonel et al., 2010, Rizzo et al., 2011, Guenova et al., 2015). IL-17, as well as TNF-

α, IL-21 and IL-22, produced by Th17 cells are present in psoriatic lesions and in higher 

levels in serum from psoriasis patients compared to healthy controls (Boniface et al., 2007, 

Lowes et al., 2008, Caruso et al., 2009). These cytokines induce proliferation of, and 

antimicrobial peptide release from, keratinocytes (Ivanov et al., 2006, Shi et al., 2011).  

T cells require antigen presentation by APCs for their activation and therefore APCs play an 

important role in psoriasis. The classical APCs of the skin are Langerhans cells (LCs) 

(Streilein and Bergstresser, 1984), which can present antigen to T cells (Romani et al., 1989), 

but their role in psoriasis remains unknown (Perera et al., 2012). LC numbers are lower in 

skin from psoriasis patients (Haftek et al., 1983), and their migration is hindered in psoriatic 

skin compared to healthy skin (Cumberbatch et al., 2006). Furthermore, a seminal paper from 

(Mizumoto et al., 2002), demonstrates CD39 is the predominant ecto-nucleotidase present on 

LCs and is essential for degradation of ATP, a danger signal implicated in skin inflammation 

(Killeen et al., 2013). This suggests LCs play a preventative role in psoriasis, consistent with 

the tolerogenic nature of these cells (Kitashima et al., 2018).  

Plasmacytoid and myeloid DCs are other APCs in the skin and play a major role in psoriasis 

pathogenesis. Plasmacytoid DCs are normally absent from the skin of healthy people, but are 

present in both lesional and healthy skin of psoriasis patients (Nestle et al., 2005). These cells 

can become activated by antimicrobial peptides such as LL-37 (Lande et al., 2007) to 

infiltrate the skin and release IFN-α (Wollenberg et al., 2002, Nestle et al., 2005). This in 

turn promotes further release of LL-37 as well as additional antimicrobial peptides; S100 

proteins and defensins from keratinocytes (Bando et al., 2007) to promote psoriasis, whilst 

Plasmacytoid DC production of IFN-α, along with IL-6 and TNF-α can activate myeloid DC 

(Nestle et al., 2005). Furthermore, LL-37 binds to RNA released by dying cells to activate 

myeloid DCs (Ganguly et al., 2009), which promote inflammation by release of IL-23 (Tonel 
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et al., 2010), which promotes Th17 cell responses. Macrophages also play a role in psoriasis, 

and are found in increased numbers in psoriatic skin of patients (van den Oord and de Wolf-

Peeters, 1994). These cells are essential for development of psoriasis-like inflammation in 

mouse models through production of TNF-α (Wang et al., 2006) and IFN-γ (Stratis et al., 

2006).  

T cell activation by APCs and cytokine production from both of these cell types causes 

keratinocyte proliferation which results in the characteristic psoriatic lesions. Keratinocytes 

constitute up to 90% of the cells of the skin (Nestle et al., 2009a) and are an innate immune 

cell type involved in psoriasis pathogenesis (Barker et al., 1991). Hyperproliferation of 

immature keratinocytes results in these cells migrating from the basal layer into the cornified 

layer in a matter of 1-3 days rather than the usual 28-30 days (Schön and Boehncke, 2005), 

which results in the thickening of the epidermis (acanthosis) characteristic of psoriatic 

lesions. As mentioned above, keratinocytes promote inflammation and psoriasis through the 

release of LL-37, defensins and S100 proteins (Bando et al., 2007), and release of these 

antimicrobial peptides, as well as chemo-attractants such as IL-8 recruits neutrophils (Bruch-

Gerharz et al., 1996), which release cytokines resulting in a feed-forward loop of 

inflammation (Terui et al., 2000). Neutrophils are found in large numbers in psoriatic skin 

and there is renewed interest in their role in psoriasis (Schön et al., 2017). Finally, 

keratinocytes can also release chemo-attractants such as CCL27 (Homey et al., 2002) and 

IL-8 to recruit T cells into the skin (Homey et al., 2002, Albanesi et al., 2001), as well as 

produce IL-23 (Piskin et al., 2006), further promoting the feed-forward loop of inflammation.  

Although psoriasis is not directly lethal, the disease can greatly reduce the quality of life of 

an individual, and increase their chance of cardiovascular disease (Neimann et al., 2006), 

arthritis (Tey et al., 2010), and some cancers (Pouplard et al., 2013). There is currently no 

cure for psoriasis, and current treatments range from topical treatments to phototherapy, but 
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satisfaction with these treatments is low (Korman et al., 2015, Schaarschmidt et al., 2015). 

New therapies for psoriasis aim to suppress the immune response through inhibition of pro-

inflammatory cytokines such as TNF-α, IL-12/23 (Rustin, 2012) and IL-17A (Hueber et al., 

2010). However, these drugs have off-target effects, and targeting cell receptors represents a 

better therapy. To achieve this pre-clinical mouse models are required. 

 

1.8. Models of Psoriasis 

Psoriasis is a uniquely human disease (Gudjonsson et al., 2007), and due to the complex 

nature of psoriasis studies are often limited to in vitro experiments or inferred from other 

murine models of skin diseases such as croton oil-induced irritant contact dermatitis (ICD) 

(Mizumoto et al., 2002) or hapten- or DNFB-induced contact hypersensitivity (CHS) models 

of atopic dermatitis (AD) (Röse et al., 2012, Gaspari et al., 2016). However, neither ICD nor 

CHS encapsulate the multifaceted innate and adaptive immune responses of psoriasis, and 

subsequent models that better reflects psoriasis have been developed. Moreover, current 

murine models of psoriasis only recapitulate some, but not every aspect of human psoriasis, 

with each model offering unique advantages and disadvantages. Mouse models of psoriasis 

can be characterised as belonging to one of four categories; spontaneous, transgenic, 

xenogeneic, or inducible, as outlined below. 

Spontaneous mouse models demonstrate skin pathologies that resemble psoriasis in some 

ways, but lack some distinct features. The flaky skin (Ttc7fsn/Ttc7fsn) mouse model 

demonstrates neutrophil infiltration into involved skin (Sundberg, 1994). Whilst the chronic 

proliferative dermatitis mutation (cpdm/cpdm) (HogenEsch et al., 1993) and the homozygous 

asebia (Scd1ab/ Scd1ab) (Gates and Karasek, 1965) mouse models demonstrate macrophage 
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and mast cell infiltration. The latter model also demonstrates epidermal thickening but each 

of these models lack other features of psoriasis, and thus have fallen out of use.  

Transgenic mouse models involve the genetic over-expression or knock-out of specific genes 

to imitate psoriasis. A transgenic mouse model causing a mutation in Stat3 in basal 

keratinocytes causes spontaneous psoriatic-like skin lesions, which demonstrates keratinocyte 

hyperproliferation, and infiltration of neutrophils and T cells (Sano et al., 2005). A transgenic 

mouse model in which expression of IL-20 is targeted to basal keratinocytes results in altered 

keratinocyte differentiation through Stat3 signalling (Blumberg et al., 2001). Alternatively, 

deletion of a gene, such as in the Ilrn-/- mouse results in epidermal thickening and formation 

of psoriatic plaques, with characteristic neutrophil and T cell infiltration (Shepherd et al., 

2004). These models are still being used, but not as often as xenogeneic or inducible models 

which offer more advantages. 

Xenogeneic mouse models involve the transplantation of human psoriatic lesions onto one of 

three immunodeficient strains. Athymic “nude mice”, which lack functional T cells (Krueger 

et al., 1981), maintain skin for months (Fraki et al., 1982). SCID mice, which lack functional 

T and B cells, maintain skin grafts but engrafted leukocytes quickly become anergic 

(Meyerrose et al., 2003). Finally, AGR129 mice, which lack functional T and B cells and 

have immature NK cells, develop psoriatic lesions spontaneously when engrafted with 

psoriatic skin due to activation and proliferation of T cells within the graft (Boyman et al., 

2004). However, these models are technically difficult and therefore require extensive 

expertise, involve transplantation of human psoriatic tissue which is hard to obtain, require 

concurrent transfer of human leukocytes and have low success rates (Mizutani et al., 2003, 

Hawkes et al., 2018). As a result of the above limitations and difficulties, most in vivo 

psoriasis models use inducible mouse models.  
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Inducible mouse models involve the injection or application of cells or molecules to promote 

inflammation and psoriasis development. A T cell-inducible model involves the 

reconstitution of SCID mice with naïve CD4+ T cells, which subsequently develop psoriatic 

lesions with epidermal thickening due to keratinocyte hyperproliferation, and infiltration of 

immune cells (Schön et al., 1997). Alternatively, injection of cytokines such as IL-23 

promotes keratinocyte hyperproliferation resulting in epidermal thickening and infiltration of 

immune cells (Chan et al., 2006, Zheng et al., 2007). However, an emerging model is 

imiquimod (IMQ)-induced psoriasis-like inflammation in mice. 

1.8.1. The IMQ-Induced Psoriasis-Like Inflammation Mouse Model 

The IMQ-induced psoriasis-like inflammation mouse model is established by application of 

the Toll-like receptor (TLR)7/8 agonist IMQ onto mouse skin, as outlined in the landmark 

study by van der Fits et al. (2009). IMQ is a commercially available topical treatment for 

genital warts (Beutner et al., 1998) and basal cell carcinoma (Beutner et al., 1999), but 

treatment leads to the development of psoriatic-like lesions on healthy skin after IMQ 

application (Wu et al., 2004). In humans IMQ induces hyperproliferation of keratinocytes 

(Ha et al., 2014), pDC infiltration and IL-23 production, which promotes activation and 

proliferation of Th17 cells (Garzorz-Stark et al., 2018) promoting psoriatic-like lesions.   

The original study by van der Fits et al. (2009) demonstrates that application of IMQ to the 

ears or shaved backs of mice, induces redness, scaling and thickening of skin resulting in 

lesions, with this skin thickening being due to altered differentiation and the 

hyperproliferation of keratinocytes, similar to that observed in humans. Furthermore, this 

study demonstrated the immune infiltrates consisted of neutrophils, T cells and professional 

APCs, also characteristic of psoriatic lesions in humans. Further studies have validated the 

ability of IMQ to mimic the characteristics and mechanisms of human psoriasis. As 
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mentioned above (Section 1.6.), IL-23-induced Th17 activation and proliferation has been 

shown to be important in human psoriasis, and IMQ induces psoriasis-like inflammation in 

mice via the same mechanism (Yoshiki et al., 2014). Furthermore, the presence of cellular 

infiltrates including T cells, and APCs including pDCs and LCs have been confirmed in 

IMQ-induced psoriasis-like lesions (Yoshiki et al., 2014, Ha et al., 2014, Vinter et al., 2015, 

Garzorz-Stark et al., 2018), while eosinophils promote neutrophil infiltration to further 

promote inflammation in IMQ-induced lesions (Kim et al., 2018a). 

The IMQ-induced psoriasis-like inflammation model offers advantages over other models of 

psoriasis. Unlike spontaneous or transgenic models, the IMQ-induced psoriasis-like 

inflammation model better recapitulates human psoriasis in vivo, and is easy to establish. 

Additionally, compared to other inducible models, the IMQ-induced psoriasis-like 

inflammation model does not require expensive reagents (such as recombinant cytokines), 

and instead can be established relatively cheaply due to commercially available IMQ in the 

forms of topical cream, such as AldaraTM (iNova Pharmaceuticals, Chatswood, Australia). 

Finally, mice are not subjected to invasive procedures such as injections, with cream applied 

topically with minimal animal handling. The IMQ-induced psoriasis-like inflammation model 

is currently the most commonly used mouse model of psoriasis, with over 200 published 

studies noted up to 2016 (Hawkes et al., 2017), and an additional 200 studies published in 

2017 and 2018 (https://www.scopus.com, last accessed 24/10/2018).  

 

1.9. Purinergic Signalling 

As outlined above, therapies for both GVHD and psoriasis are limited in humans, 

highlighting the need to investigate alternative pathways for these inflammatory disorders. 

Purinergic signalling plays an important role in numerous inflammatory disorders, and may 
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play a role in these diseases. The concept of purinergic signalling was first coined, when the 

purine-based nucleotide adenosine triphosphate (ATP) was suggested to be an important co-

transmitter in the nervous system (Burnstock, 1972). Purinergic signalling is a network 

involving extracellular nucleotides and nucleosides, plasma membrane receptors and ecto-

enzymes (Volonté and D’Ambrosi, 2008) (Figure 1.4). Adenine-based nucleotides and 

nucleosides, and their respective receptors and ecto-enzymes, are the most widely studied 

purinergic signalling molecules.  

 

 ATP is released from damaged or dying cells, or by 
exocytosis or channels (such as connexion-43 or pannexin-1). Extracellular ATP can activate P2X 
receptors, including P2X7. ATP is broken down to ADP and AMP by CD39, and AMP is broken 
down to adenosine by CD73. Adenosine can activate adenosine receptors, including A2A. Finally 
adenosine is removed by conversion to inosine by adenosine deaminase (not shown). Abbreviations; 
ADP, adenosine diphosphate, AMP, adenosine monophosphate, ATP, adenosine triphosphate. Figure 
partly adapted from Junger (2011). 

 

ATP when found extracellularly can act as a DAMP and activate P2 receptors to cause 

numerous downstream pro-inflammatory effects (Di Virgilio and Vuerich, 2015). ATP can be 

released into the extracellular space by damaged and/or dying cells via channels such as 

connexin-43 (Csóka et al., 2015, Qin et al., 2016, Wang et al., 2017) and pannexin-1 (Yang 

et al., 2015, Lohman et al., 2015, Zhang et al., 2017, Parzych et al., 2017, Saez et al., 2017) 

or by exocytosis (Sakaki et al., 2013, Ren et al., 2014, Zhang et al., 2017, Kato et al., 2017). 

This ATP is commonly degraded to adenosine diphosphate (ADP) and adenosine 

monophosphate (AMP) by the cell surface ecto-nucleotidase ecto-nucleoside triphosphate 

Figure 1.4. The purinergic signalling pathway.  
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diphosphohydrolase-1 (CD39), and AMP is subsequently degraded to adenosine by ecto-5’-

nucleotidase (CD73) (Zimmermann, 2000). Adenosine can then activate purinergic P1 

(adenosine) receptors, which commonly results in anti-inflammatory effects (Antonioli et al., 

2013) (Figure 1.4). Purinergic pathway is involved in numerous systems, including the 

central nervous, cardiovascular, reproductive and immune systems (Burnstock, 2017). 

1.9.1. P2 Receptors 

1.9.1.1. P2Y Receptors 

P2Y receptors are a collection of eight G protein-coupled receptors (GPCRs) (P2Y1, 2, 4, 6, 11, 

12, 13, and 14). P2Y receptor stimulation involves the opening or closing of voltage-gated K+ 

(Hille, 1994), Na2+ (Cantrell and Catterall, 2001) or Ca2+ (Dolphin, 2003) channels and 

second messenger cascades to exert their effect (Soltoff et al., 1998, Huwiler et al., 2000). 

P2Y receptors are present on numerous neurological and immune cells (Burnstock and 

Knight, 2004, Abbracchio et al., 2006). P2Y receptors will not be discussed further, except 

for a small section on P2Y2 in GVHD below (Section 1.10.1.1.). For a comprehensive review 

on P2Y receptors consult Abbrachio et al. (2006). 

1.9.1.2. P2X Receptors 

P2X receptors are a family of seven ligand gated ion channels (P2X1-7) which, upon 

stimulation by ATP, allow the flux of cations including Na+, K+ and Ca2+ (Khakh et al., 

2001). P2X receptors are important in immunity, are present on a number of immune cells 

and result in numerous downstream signalling effects. For a comprehensive review on P2X 

receptors see Burnstock and Boeynaems, (2014). In the P2X family of receptors, P2X4 

demonstrates the shortest amino acid sequence and P2X7 the longest (Valera et al., 1994). 

Although both subtypes are important in inflammation and immunity, P2X7 is the most 

widely studied in this field (Adinolfi et al., 2017). 
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1.9.1.3. P2X7 

P2X7 is encoded by the P2RX7 gene (Rassendren et al., 1997) located on chr 12 (12q24) in 

humans (Buell et al., 1998). The P2RX7 gene is highly polymorphic and contains a number 

of single nucleotide polymorphisms (SNP) (Sluyter, 2017). P2X7 was originally classified as 

the “P2Z” receptor, however following the cloning of this receptor was renamed P2X7, 

becoming the seventh member of the P2X receptor family (P2X1-7) (Surprenant et al., 1996). 

Each full-length P2X7 subunit has a total molecular weight of 68 kDa (Nicke, 2008) or 75-82 

kDa after N-glycosylation (Young et al., 2007, Adinolfi et al., 2010). The original 

computational structure of P2X7 (Jiang et al., 2013) was based on the crystal structure of the 

zebrafish P2X4 receptor (Kawate et al., 2009), while the structure of the first native (panda) 

P2X7 receptor has since been characterised (Karasawa and Kawate, 2016). Overall, 

recombinant P2X7 has been characterised in 12 different species (seven mammalian and five 

non-mammalian) (Sluyter, 2017). Each P2X7 subunit is comprised of two transmembrane 

domains, with the three ATP binding sites present on the extracellular loop, while the 

carboxyl and amino termini are found intracellularly (Jiang et al., 2013, Karasawa and 

Kawate, 2016). The structure of the P2X7 receptor is analogous to a “dolphin” with the head, 

and three fins (dorsal fin, and left and right flippers) representing structurally distinct sections 

of β-sheets connected to the “body” constituting the extracellular domain, and the “tail” 

representing the transmembrane proteins anchoring P2X7 to the plasma membrane 

(Karasawa et al., 2017). P2X7 is expressed on many immune cell types including DCs (Saez 

et al., 2017), macrophages (De Torre-Minguela et al., 2016), T cells (Sluyter and Wiley, 

2014), B cells (Pupovac et al., 2015), NK cells (Gu et al., 2000), neutrophils (Karmakar et 

al., 2016) and basophils (Tsai et al., 2015) but absent on eosinophils (Mohanty et al., 2001). 

Expression on mast cells is tissue-dependent (Kurashima et al., 2012). 



www.manaraa.com

37 
 

Due to the expression of P2X7 on a wide range of immune cell subsets, P2X7 plays both a 

role in innate and adaptive immune responses. In the innate immune system, P2X7 activation 

is important against bacterial infections, including Mycobacterium, Plasmodium spp. (Salles 

et al., 2017) and Leishmania (Thorstenberg et al., 2018). However, P2X7 is also important in 

adaptive immunity. ATP activation of P2X7 can inhibit generation and function of Treg cells 

(Schenk et al., 2011), and induce apoptosis of Treg and NKT cells (Rissiek et al., 2014). 

Conversely, P2X7 activation promotes immune homeostasis in follicular Th cells in Peyer’s 

patches (Proietti et al., 2014) and P2X7 is important for survival of memory CD8+ T cells 

(Savio et al., 2018).  

P2X7 exerts its effects through a variety of downstream effects including reactive oxygen 

species formation (Bartlett et al., 2013, Moreira-Souza et al., 2017), shedding of surface 

molecules such as CD23 (Pupovac et al., 2015), CD62L (Gu et al., 1998, Sluyter and Wiley, 

2002) and TNF-α (Barberà-Cremades et al., 2017), and up-regulation of CD80 and CD86 

(Wilhelm et al., 2010, Lioi et al., 2015). P2X7 activation also causes NLRP3 inflammasome 

activation and release of IL-1β and IL-18 (Buell et al., 1998, Piccini et al., 2008), IL-2 (Yip 

et al., 2009), IL-6 (Solini et al., 1999, Caporali et al., 2008), IL-17 (Ghiringhelli et al., 2009), 

IL-18 (Piccini et al., 2008), and prostaglandin E2 (Barbera-̀Cremades et al., 2012). P2X7 

activation can also promote cell death, through apoptosis (Zheng et al., 1991), necrosis 

(Dagvadorj et al., 2015), or pyroptosis (Vanderpuye-Orgle et al., 2015). The polymorphic 

nature of P2RX7 also impacts the downstream effects of P2X7. For example loss-of-function 

SNPs such as G496A impair ATP-induced IL-1β and IL-18 release from monocytes (Sluyter 

et al., 2004b, Sluyter et al., 2004a). In contrast, gain-of-function SNPs such as A348T, 

increase ATP-induced IL-1β release from monocytes (Stokes et al., 2010). P2RX7 SNPs also 

play a role in some diseases where P2X7 is implicated as discussed below (Section 1.8.1.). 
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Similar to other P2X receptors, P2X7 is a trimeric channel stimulated by binding of ATP to 

its extracellular domain to promote subunit rearrangement and opening of a cation channel 

(Di Virgilio et al., 2018). However, P2X7 is less sensitive to ATP compared to other P2X 

receptors, requiring >100 μM for activation (Khakh and North, 2006) and therefore can 

detect large concentrations of extracellular ATP released during cellular stress and damage. 

Activation of P2X7 results in rapid influx of Na+ and Ca2+ and efflux of K+ (Surprenant et al., 

1996, Rassendren et al., 1997, Egan and Khakh, 2004). However, pro-longed activation of 

P2X7 also causes the formation of a pore, which can be observed by measuring the uptake of 

dyes such as 6-carboxyfluorescein (6-FAM), lucifer yellow, fura-2 (Steinberg et al., 1987), 

ethidium2+ (Wiley et al., 1993) and YO-PRO-12+ (Surprenant et al., 1996), but not dyes >900 

kDa (Steinberg et al., 1987, Surprenant et al., 1996). P2X7 is believed to be the pore forming 

molecule (Di Virgilio et al., 2018), however other molecules such as pannexin-1 may also be 

involved (Pelegrin and Surprenant, 2006) but their relative contribution remains to be 

resolved.  

Despite past and current debates of P2X7 pore formation, ATP-induced dye uptake remains 

an efficient way to measure P2X7 activity in vitro (Jursik et al., 2007, Korpi-Steiner et al., 

2008). ATP is the physiological agonist of P2X7, with a half maximal excitatory 

concentration (EC50) of 80-100 μM at human P2X7 (Wiley et al., 2011). However, the ATP 

analogue, 2',3'-(4-benzoyl)-benzoyl-adenosine triphosphate (BzATP) is a more potent agonist 

with an EC50 of 7-20 μM at human P2X7 (Carroll et al., 2009, Wiley et al., 2011). Notably, 

P2X7 can also be activated by antimicrobial peptides such as LL-37, which directly activates 

P2X7 to cause Ca2+ influx, pore formation, and cell proliferation in vitro in transfected 

HEK-293 cells (Tomasinsig et al., 2008).  

A number of P2X7 antagonists are commercially available (Bartlett et al., 2014), including 

Brilliant Blue G (BBG), a non-toxic analogue of the US food and drug administration (FDA) 
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approved food dye Brilliant Blue FCF (Apolloni and Volonte, 2013), as well as the 

nucleoside reverse transcriptase inhibitor stavudine (Fowler et al., 2014). The antagonists 

most relevant to this thesis and the half maximal inhibitory concentrations (IC50) of each are 

summarised in Table 1.2. 

 

 

 Abbreviations: IC50, half 
maximal inhibitory concentration, N.D., not determined. 

Antagonist IC50 (nM) Reference 

Brilliant Blue G (BBG) 300 (Jiang et al., 2000) 

Pyridoxalphosphate-6-azophenyl-
2',4'-disulfonic acid (PPADS) 

1200 (Donnelly-Roberts et al., 2009a) 

KN-62 12.7 (Gargett and Wiley, 1997) 

Stavudine N.D. (Fowler et al., 2014) 

A804598 11 (Donnelly-Roberts et al., 2009b) 

 

1.9.2. Ecto-nucleotidases 

Whilst ATP plays a role in the activation of P2 receptors including P2X7 activation in 

inflammation (Adinolfi et al., 2017), this nucleotide is quickly degraded by 

ecto-nucleotidases to adenosine in a step-wise manner to limit inflammation. 

Ecto-nucleotidases are a family of cell surface enzymes that hydrolyse nucleotides and are an 

important part of the purinergic signalling system throughout the body. They consist mainly 

of four families; the ecto-nucleoside triphosphate di-phosphohydrolases (E-NTPDases); ecto-

nucleotide pyrophosphatase/phosphodiesterases (E-NPPs); alkaline phosphatases (APPs); and 

ecto-5’-nucleotidases (Zimmermann, 2000). As noted above, the ecto-nucleotidases, CD39 

Table 1.2. P2X7 antagonists, and the IC50 exhibited at human P2X7. 
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and CD73 mediate the stepwise conversion of ATP to adenosine. Together these ecto-

enzymes play major roles in inflammation and immunity as outlined below.   

1.9.2.1. CD39 

CD39 is encoded by the ENTPD1 gene located on human chr 10 (10q24.1) (Maliszewski et 

al., 1994). CD39 is composed of two transmembrane domains, with the carboxyl and amino 

domains found intracellularly, and a large hydrophobic domain found extracellularly (Heine 

et al., 2001). CD39 has a molecular mass of 70-100 kDa, depending on the extent of 

glycosylation (Kaczmarek et al., 1996). Originally thought to be a marker of B cell activation 

(Ling et al., 1989), CD39 has since been found to be present on T cells (Kansas et al., 1991), 

monocytes, DCs (Koziak et al., 1999) and NK cells (Kansas et al., 1991). CD39 is 

responsible for Ca2+- and Mg2+-dependent degradation of extracellular ATP to ADP and 

subsequently to AMP (Heine et al., 2001). The crystal structure of CD39 was partially 

resolved after over expression in Chinese hamster ovary cells (Zhong et al., 2008), however 

the full structure has since been characterised from a bacterium (Legionella pneumophilia) 

(Zebisch et al., 2012, Zebisch et al., 2013). The full structure of CD39 revealed that both 

ATP and ADP are hydrolysed at the same site, and this can be done sequentially, 

demonstrating the efficient removal of ATP by CD39 (Zebisch et al., 2012, Zebisch et al., 

2013). Notably, effects of CD39 can be mimicked in part by the use of the ATPDase apyrase 

(Handa and Guidotti, 1996). 

Antagonists of CD39 include nucleotide-based compounds modelled from the structure of 

ATP, including ARL67156, which is a weak inhibitor of human CD39 with an IC50 of 24 μM 

(Crack et al., 1994) and 8-BuS-ATP with an IC50 of 5 ± 3 μM (Lecka et al., 2013). 

Non-nucleotide-based inhibitors of human CD39 such as PSB-069, with an IC50 of 1.6 μM 

(Longhi et al., 2017) and suramin, with an IC50 of 0.3 mM (Leal et al., 2005) are non-specific 

(Baqi, 2015). Other non-nucleotide inhibitors belonging to the polyoxometalate (POM) group 
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of compounds are relatively specific to CD39 (Muller et al., 2006). However, at least one of 

these compounds (POM-1), which is commonly used as a specific CD39 antagonist, blocks 

murine P2X7 (Pimenta-Dos-Reis et al., 2017). Thus, further investigation of the specificity of 

these compounds is warranted.  

1.9.2.2. CD73 

CD73 is encoded by the NT5E gene located on human chr 6 (6q14.3) (Boyle et al., 1988). 

CD73 is a 71 kDa (Misumi et al., 1990) glycosylphosphatidylinositol-linked protein 

(Zimmermann, 1992). CD73 is present on DCs (Berchtold et al., 1999) and T cells (Thomson 

et al., 1990), but CD73 is absent on NK cells (Dalh Christensen and Andersen, 1992) and 

monocytes (Clifford et al., 1997). CD73 is responsible for the degradation of AMP to 

adenosine (Pearson et al., 1980), which is achieved by exposure of the active site when CD73 

changes from the closed to open state, due to the large flexibility of CD73 homodimers 

(Knapp et al., 2012). 

Reactive blue 2 is an antagonist of human CD73, with a Ki of 20 μM (IC50 not determined) 

(Baqi et al., 2010), but is non-specific exerting antagonistic properties at numerous human P2 

receptors (Baqi, 2015). The specific antagonist αβ-methylene-ADP (APCP), can keep CD73 

in the closed state (Knapp et al., 2012) and demonstrates an IC50 of 3.6-5.6 μM at human 

CD73 (Crane et al., 2007, McManus et al., 2018). However, APCP is not specific to CD73 as 

it has since been shown to also inhibit CD39 (Covarrubias et al., 2016).  

1.9.3. P1 Receptors 

Adenosine receptors, also known as P1 receptors, consist of four subtypes of GPCRs (A1, 

A2A, A2B and A3) which, as the name suggests, are all activated by extracellular adenosine. 

Under physiological conditions, activation of A2 receptors generally results in release of 

cytokines that promote an anti-inflammatory effect, while A1 and A2 can have either pro- or 
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anti-inflammatory effects. The expression of different subtypes of adenosine receptors varies 

between cell types (Haskó et al., 2008). A2A and A2B bind the G-protein Gs, which stimulates 

adenylyl cyclase to produce cAMP. Conversely, A1 and A3 bind Gi/o
 to inhibit adenylyl 

cyclase (Fredholm et al., 2011a). A2A and A2B share 59% sequence homology (Lucattelli et 

al., 2011), but A2A is better characterised than A2B and more commonly is the target of 

therapies for diseases, such as Parkinson’s and Huntington’s disease, currently in human 

trials (Borea et al., 2018). All four adenosine receptor subtypes are discussed below. 

1.9.3.1. A1 

A1 is encoded by the ADORA1 gene located on human chr 1 (1q32.1) (Townsend-Nicholson 

et al., 1995). Similar to all adenosine receptors, A1 consists of seven transmembrane proteins 

(Cheng et al., 2017). A1 can be expressed as homodimers (Ciruela et al., 1995, Namba et al., 

2010), however A1 has also been shown to form heterodimers with β-adrenergic receptors 

(Komatsu et al., 2012, Chandrasekera et al., 2013), and dopamine receptors (Gines et al., 

2000). Furthermore, A1 can also form heterodimers with other purinergic receptors including 

A2A (Ciruela et al., 2006) and P2Y1 (Yoshioka et al., 2001, Yoshioka et al., 2002). 

A1 predominantly plays a role in the nervous system (Chen et al., 2013), but is found on 

immune cells including DCs (Panther et al., 2001, Schnurr et al., 2004), monocytes and 

macrophages (Eppell et al., 1989, Thiele et al., 2004), T and B cells (Takahashi et al., 2007), 

NK cells (Priebe et al., 1990), as well as neutrophils (Cronstein et al., 1990) and eosinophils 

(Kohno et al., 1996). In innate immunity, A1 activation on neutrophils promotes a pro-

inflammatory response, promoting chemotaxis of neutrophils and their adhesion to 

endothelial cells (Cronstein et al., 1990, Cronstein et al., 1992). Furthermore, A1 activation 

and promotes superoxide release from neutrophils (Cronstein et al., 1990) and eosinophils 

(Ezeamuzie and Philips, 1999). In adaptive immunity, A1 activation results in chemotaxis of 
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DCs and stimulation of T cells (Panther et al., 2001), T and B cell proliferation (Takahashi et 

al., 2007) and NK cell activation (Priebe et al., 1990). 

Adenosine is the physiological agonist of A1, however a number of selective agonists and 

antagonists exist. The agonist N6-cyclopentyladenosine (CPA) demonstrates a Ki of 2.25 ± 

0.18 nM (Cappellacci et al., 2008), 2-chloro-N6-cyclopentyladenosine (CCPA) demonstrates 

a Ki of 0.8 ± 0.06 nM (Cappellacci et al., 2008) and N6-cyclohexyladenosine demonstrates a 

Ki of 7.7 ± 2.2 nM (Kollias-Baker et al., 1997). Conversely, caffeine is commonly used as a 

general adenosine receptor antagonist, due to its low cost and wide availability (Sattin and 

Rall, 1970). However, the specific A1 antagonist DPCPX exhibits a Ki of 3.9 nM, but no IC50 

has been published (Klotz, 2000).  

1.9.3.2. A2A 

A2A is encoded by the ADORA2A gene located on human chr 22 (22q11.23) (MacCollin et 

al., 1994). The crystal structure demonstrates A2A consists of seven transmembrane proteins, 

and exhibits a unique binding site consisting of four disulphide bonds in the extracellular 

domain (Jaakola et al., 2008, Lebon et al., 2011b, Weinert et al., 2017), but unlike the other 

three adenosine receptors, A2A is the only adenosine receptor lacking a site for palmitoylation 

at the carboxyl terminus (Linden, 2001).  

A2A is constitutively expressed as homodimers (Canals et al., 2004), but can interact with 

other proteins at the cell surface, forming heterodimers with cannabinoid receptors (Carriba 

et al., 2007, Navarro et al., 2008) and dopamine receptors (Hillion et al., 2002). Association 

of A2A and dopamine receptors can also lead to the formation of heterotrimers with metabolic 

glutamate type 5 receptors (Cabello et al., 2009).  Furthermore, a seminal paper by Moriyama 

and Sitkovsky (2010), demonstrated that A2A is required for transport of A2B to the cell 

surface, as the majority of A2B is degraded by the proteasome in A2A KO cells. 
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Similar to A1, A2A plays a role in the nervous system, and therefore is found in the striatum 

and other brain regions (Rosin et al., 1998, Lopes et al., 2002, Rebola et al., 2005). However, 

due to the anti-inflammatory role in immunity, A2A is present on numerous immune subtypes 

including granulocytes (Sullivan and Linden, 1998), APCs including DCs (Panther et al., 

2001), monocytes and macrophages (Eppell et al., 1989, Thiele et al., 2004), T and B cells 

(Huang et al., 1997), NK cells (Priebe et al., 1990) and mast cells (Ryzhov et al., 2008). A2A 

plays a role in both adaptive and innate immunity. Activation of A2A on neutrophils inhibits 

their adhesion to endothelial cells (Eltzschig et al., 2004), reduces reactive oxygen species 

production (Cronstein et al., 1990), and downregulates L-selectin and β2-integrin (Thiel et al., 

1996). A2A activation prevents phagocytosis in monocytes (Salmon et al., 1993) and 

macrophages (Eppell et al., 1989). Upon activation DCs up-regulate A2A expression (Panther 

et al., 2001, Fossetta et al., 2003) and concomitantly decrease production of pro-

inflammatory IL-12, and increase production of anti-inflammatory IL-10 (Banchereau and 

Steinman, 1998, Panther et al., 2001, Panther et al., 2003). A2A activation on T cells inhibits 

IFN-γ, TNF-α and IL-4 production (Lappas et al., 2005, Odashima et al., 2005). Furthermore, 

A2A activation inhibits T cell activation, leading to reduced inflammatory activity (Lappas et 

al., 2005) and proliferation (Takahashi et al., 2007), while A2A activation on NK cells inhibits 

their activity (Priebe et al., 1990). 

The determination of the crystal structure of A2A in complex with the antagonist ZM241385 

identified the ability of this antagonist to keep the receptor in an inactive state, potentially due 

to the interaction with a tryptophan residue important for its activation (Jaakola et al., 2008). 

Further characterisation of A2A in complex with the antagonist ZM241385 also identified an 

allosteric pocket (Sun et al., 2017), whilst A2A in complex with other antagonists (xanthines) 

(Cheng et al., 2017) may allow development of alternative agonists and antagonists. 

Characterisation of the structure with an engineered G protein demonstrates how A2A is 
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activated, and A2A is used as an example to allow elucidation of information about other 

GPCRs (Carpenter et al., 2016). A2A activation on immune cells stimulates adenylyl cyclase 

to promote cyclic AMP (cAMP) production, exerting an anti-inflammatory effect by 

preventing T cell activation (Huang et al., 1997) and reducing pro-inflammatory cytokine 

release (Ohta and Sitkovsky, 2001).  

Adenosine is the physiological agonist of A2A, however a number of potent A2A agonists have 

been developed. CGS-21680 demonstrates a Ki of 27 nM (Klotz et al., 1998) and an EC50 of 

24-33 nM at human A2A (Himer et al., 2010). Similarly, ATL-146e demonstrates a Ki value 

of 11 nM (but no EC50 determined) at human A2A (Lebon et al., 2011a), but is not 

commercially available due to its current use in clinical trials as a therapy for heart conditions 

(Gao and Jacobson, 2011). Specific antagonists of A2A include ZM241385 (but no IC50 

determined for human A2A) and SCH-58261, which demonstrates an IC50 of 15 ± 3 nM at 

human A2A (Varani et al., 1996). 

1.9.3.3. A2B 

A2B is encoded by the ADORA2B gene located on human chr 17 (17p12) (Jacobson et al., 

1995). Similar to other adenosine receptors A2B consists of seven transmembrane proteins, 

but also possesses a unique binding site for hypoxia-inducible factor, important for cellular 

responses during hypoxia and inflammation (Kong et al., 2006, Gessi et al., 2010). 

Furthermore, A2B is unique from other adenosine receptors requiring higher (micromolar) 

concentrations for activation (Fredholm et al., 2011b). A2B can be expressed as homodimers 

(Moriyama and Sitkovsky, 2010), but as mentioned above (section 1.9.5.) A2B can also form 

heterodimers with A2A (Moriyama and Sitkovsky, 2010), as well as with other molecules 

including adenosine deaminase (Herrera et al., 2001, Pacheco et al., 2005), SNARE proteins 

(Wang et al., 2004) and netrin-1 (Corset et al., 2000). 
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A2B is found on immune cells including monocytes and macrophages (Eppell et al., 1989, 

Thiele et al., 2004), T and B cells (Gessi et al., 2005), neutrophils (Eckle et al., 2008) and 

mast cells (Feoktistov and Biaggioni, 1995). A2B was originally thought to be absent on DCs 

(Panther et al., 2001), but has since been shown to be expressed (Addi et al., 2008, Novitskiy 

et al., 2008) on these cells. Expression of A2B on neutrophils is controversial. Using Western 

blotting, one study showed A2B is not present on neutrophils (Fortin et al., 2006), while 

others have demonstrated the presence of  functional A2B on these cells (Wakai et al., 2001, 

Thiel and Chouker, 1995). A2B plays roles in both innate and adaptive immunity. Activation 

of A2B on neutrophils inhibits their migration and adhesion to endothelial cells (Wakai et al., 

2001) and prevents TNF-α production (Thiel and Chouker, 1995), whilst A2B activation on 

monocytes promotes production of the anti-inflammatory cytokine IL-10 (Nemeth et al., 

2005). In adaptive immunity, A2B activation on T cells reduces IL-2 production (Mirabet et 

al., 1999).  

Similar to the other adenosine receptors, adenosine is the physiological antagonist of A2B, 

however unlike the other receptors, no specific agonists for A2B exist (Fredholm et al., 

2011b). Nevertheless, MRS1754 is a specific A2B antagonist, which exhibits a Ki value of 

403 ± 194 nM but no published IC50 value (Kim et al., 2000).   

1.9.3.4. A3 

A3 is encoded by the ADORA3 gene located on human chr 1 (1p13.2) (Monitto et al., 1995). 

Similar to all adenosine receptors, A3 consists of seven transmembrane proteins, and is 

rapidly desensitised upon activation (Palmer and Stiles, 2000). A3 is expressed as a 

homodimer and has been shown to form heterodimers (May et al., 2011), but the specific 

binding partners have not been identified. 
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A3 is expressed on immune cells including DCs (Fossetta et al., 2003, Panther et al., 2001), 

monocytes and macrophages (Eppell et al., 1989, Thiele et al., 2004), T and B cells (Gessi et 

al., 2004), neutrophils (Bouma et al., 1997, Walker et al., 1997b), eosinophils (Walker et al., 

1997a) and mast cells (Salvatore et al., 2000, Zhong et al., 2003). A3 is important in both 

innate and adaptive immunity. A3 activation on neutrophils results in their migration in 

response to chemoattractant release by microbes (Chen et al., 2006), whilst activation on 

monocytes reduces IL-12 production (la Sala et al., 2005). In adaptive immunity, A3 

activation on lymphocytes promotes their proliferation (Takahashi et al., 2007).  

Adenosine is the physiological agonist of A3, whilst a selective agonist Cl-IB-MECA 

demonstrates a Ki of 3.16 ± 0.007 nM at human A3 (Xia et al., 2018). Specific A3 antagonists 

are derived from non-purine based classes, including flavonoids and dihydropyridines 

(Jacobson et al., 1997). Two examples include MRS-1292 with a Ki of  29 nM (Gao et al., 

2002) and an IC50 of 41 ± 11 nM (Yang et al., 2005a), and MRS-3558 with a Ki of 0.3 nM 

(Joshi and Jacobson, 2005) and an IC50 of 0.4 nM (Zhang et al., 2010).  

 

1.10. Purinergic Signalling in Inflammatory Disorders 

Extracellular ATP exerts pro-inflammatory effects in numerous diseases and ATP activation 

of P2X7 is implicated in a number of these diseases (Adinolfi et al., 2017). Breakdown of 

ATP to adenosine by CD39 and CD73 on numerous cell types typically results in beneficial 

anti-inflammatory effects (Bours et al., 2006) and is important in reducing inflammation in 

numerous inflammatory diseases (Antonioli et al., 2013). CD39 is important for adenosine 

generation and Treg cell-mediated immune suppression (Deaglio et al., 2007). The 

immunosuppressive function of Treg cells may in fact rely on the conversion of ATP to 

adenosine (Deaglio et al., 2007, Ernst et al., 2010).  
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In tissue transplantation, genetic differences in tissues or cells transplanted from one 

individual to another is inevitable, and as mentioned above these differences can result in 

immune responses and inflammation, potentially in the form of GVHD. Due to the 

importance of purinergic signalling in immunity and inflammation, it is therefore likely 

purinergic signalling plays a role in transplantation and GVHD. Alternatively, the skin is 

highly immunogenic and in the case of skin diseases such as psoriasis, where chronic 

inflammation is a characteristic of pathogenesis, it is likely purinergic signalling also plays a 

role. The roles of purinergic signalling in transplantation and GVHD, as well as skin biology 

and psoriasis are summarised below. 

1.10.1. Purinergic Signalling in Transplantation 

Purinergic signalling has been implicated in transplantation, predominantly studied in the 

context of whole organ transplantation. Increased ATP concentrations and activation of the 

P2X7 receptor can increase the risk of whole-organ rejection in heart (Vergani et al., 2013b), 

lung (Liu et al., 2014), islet (Vergani et al., 2013a), and liver and skin (Amores-Iniesta et al., 

2017) transplants. Similarly, genetic deficiency of CD39 or CD73 causes increased ischemia 

in heart (Enjyoji et al., 1999, Dwyer et al., 2004, Eckle et al., 2007), liver (Yoshida et al., 

2015) and renal (Lu et al., 2008) transplants, however genetic deficiency of CD73 was found 

to be protective in one study of renal transplantation (Rajakumar et al., 2010). Conversely, 

increased CD39 and CD73 expression, correlates to reduced ischemia in heart (Dwyer et al., 

2004), renal (Grenz et al., 2007b, Grenz et al., 2007a, Crikis et al., 2010) and liver (Yoshida 

et al., 2013) transplantation. The degradation of ATP to adenosine by CD39 and CD73 is 

important as activation of A2A by adenosine reduces damage and rejection of lung (Sharma et 

al., 2009, Gazoni et al., 2010), islet (Chhabra et al., 2010), renal (Lee and Emala, 2001, 

Crikis et al., 2010), and skin (Sevigny et al., 2007) transplants.  
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Whilst purinergic signalling plays a role in whole organ transplantation, it is also implicated 

in HSCT. A study by (Lee et al., 2007) demonstrated that P2RX7 genotypes influence overall 

survival in HSCT patients. HSCT recipients demonstrated significantly reduced survival 

when their P2RX7 genotype, or the P2RX7 genotype of the donor, was homozygous for the 

SNP encoding the mutation E496A compared to donors wild-type or heterozygous for this 

allele. However, this finding was not replicated in a larger study (Karaesmen et al., 2017). A 

recent abstract by Koldej et al. (2018) demonstrates that homozygosity for gain-of-function 

P2RX7 SNPs (T375S, G150R, Q460R and A348T) leads to a reduced relapse-free survival 

and overall survival in HSCT patients, however this data is yet to be published in full. 

Moreover, both pharmacological and genetic evidence, mainly in allogeneic mouse models, 

suggests a role for purinergic signalling in GVHD, as discussed below.  

1.10.1.1. P2Y2 in GVHD 

P2Y2 has been implicated in GVHD, but findings are limited and will only be discussed 

briefly. P2Y2 is present on neutrophils (Zhang et al., 1996), eosinophils (Mohanty et al., 

2001), mast cells (Gao et al., 2013), monocytes (Aga et al., 2002), macrophages (Coutinho-

Silva et al., 2005), DCs (Berchtold et al., 1999), as well as T and B cells (Koshiba et al., 

1997, Trabanelli et al., 2012). Notably, P2Y2 deficient mice demonstrate reduced mortality, 

serum IL-6, and histological damage in an allogeneic mouse model of GVHD (Klambt et al., 

2015). Specific genetic deletion of P2Y2 in hematopoietic tissues and more specifically on 

inflammatory myeloid cells reduces GVHD severity (Klambt et al., 2015), while a lack of 

P2Y2 in Treg cells worsens GVHD (Dürr et al., 2012). Collectively, this suggests both pro- 

and anti-inflammatory roles of P2Y2 in GVHD potentially limiting its therapeutic potential. 

1.10.1.2. P2X7 in GVHD 

Evidence for the role of P2X7 in GVHD comes indirectly from studies of downstream effects 

of P2X7 activation, as well as studies of pharmacological blockade and/or genetic deficiency 
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of P2X7 in allogeneic mouse models of GVHD. In allogeneic mouse models of GVHD, 

indirect evidence of the role of P2X7 in GVHD is supported by genetic deletion or 

pharmacological blockade of IL-1 (the super family of cytokines, including IL-1β), with the 

recombinant IL-1 receptor antagonist “anakinra” (10 mg/kg injected i.p. on days -1, 0, 1, 2, 4, 

6, and 8) or a neutralising anti–IL-1β antibody (10 mg/kg injected i.p. on day -1), which 

delayed GVHD and significantly increased survival (Jankovic et al., 2013). Additionally, 

genetic deletion of the NLRP3 inflammasome in the host, but not the donor, also reduced 

GVHD-associated weight loss, histological damage and mortality (Jankovic et al., 2013). 

Furthermore, micro-RNA (miR)-155, which regulates inflammasome activation and IL-1β 

production, as well as IL-6 and TNF-α production (Ceppi et al., 2009), is upregulated in 

activated T cells in mice with acute GVHD (Ranganathan et al., 2012). Genetic deletion of 

miR-155 results in reduced damage to target organs and an increased survival due to a 

reduced number of activated T cells (Ranganathan et al., 2012) as well as reduced DC 

migration, inflammasome activation and IL-1β production (Chen et al., 2015).  

The role of P2X7 activation by ATP in promoting GVHD pathogenesis has been 

demonstrated by pharmacological blockade and genetic deletion of P2X7 in allogeneic mouse 

models of GVHD. First, ATP was shown to be released at the sites of tissue damage in 

HSCT, where activation of P2X7 causes upregulation of the co-stimulatory molecules, CD80 

and CD86 on DCs to promote T cell responses (Wilhelm et al., 2010). Second, apoptosis and 

inflammation of target organs, as well as serum IFN-γ, was reduced in the presence of either 

apyrase (4U injected i.p. days 0–2 and 6–8), or PPADS (10 μmol injected i.p. daily, days 

0-10) or KN-62 (1 μmol injected i.p. daily, days 0-10). Finally, genetic deletion of P2X7 in 

the host, but not the donor cells, reduces serum concentrations of the pro-inflammatory 

cytokines IFN-γ, TNF-α, and IL-6, and prolonged survival (Wilhelm et al., 2010). Fowler et 

al. (2014) validated these results by demonstrating that injection of stavudine (25 mg/kg, 
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twice daily days 0-10) reduces weight loss and serum IFN-γ, TNF-α, and IL-6 concentrations, 

and prolonged survival. Finally, P2X7 blockade using BBG (50 mg/kg or 75 mg/kg, injected 

i.p. twice weekly for up to four weeks) reduces liver damage, as well as hepatic expression of 

P2X7, and the pro-inflammatory cytokines IL-1β and IL-18 (Zhong et al., 2016).  

Clinical studies in humans also support a potential role for P2X7 in GVHD. In HSCT, the 

presence of loss-of-function SNPs, E496A or I568N in the recipient reduced the incidence of 

GVHD (Koldej et al., 2018), however this data is yet to be published in full. Furthermore, 

P2X7 is increased on circulating PBMCs and higher numbers of P2X7 expressing cells are 

found in the colons of HSCT patients with GVHD (Wilhelm et al., 2010). The role of P2X7 

in this disease has not been examined in a humanised mice mouse model of GVHD and is 

limited in humans.  

1.10.1.3. CD39 and CD73 in GVHD 

ATP is released at the sites of damage in HSCT recipients to promote inflammation but its 

degradation by apyrase can prevent GVHD (Wilhelm et al., 2010). Moreover, CD39 and 

CD73 have been shown to be important in preventing GVHD, in both in vitro and in vivo 

allogeneic mouse models of GVHD.  

In mixed lymphocyte reactions (MLRs), mesenchymal stem cells express increased CD39 

and T cells express increased CD73, to increase adenosine concentrations and reduce 

activation of conventional T cells (Saldanha-Araujo et al., 2011). Additionally, in co-cultures 

of Treg and conventional T cells, up-regulation of CD39 and conversion of ATP to adenosine 

by Treg cells reduces T cell stimulation and inflammation through a reduction in NOTCH1 

signalling (Del Papa et al., 2017). Pharmacological blockade of CD73 in allogeneic MLRs 

using the antagonist APCP (100 μM) reduces suppression of T cell proliferation by Treg cells 

and increases IFN-γ concentrations (Wang et al., 2013). Similarly, an anti-human CD73 mAb 
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(clone 2C5) increases TNF-α, IL-1β and IFN-γ concentrations in allogeneic MLRs (Young et 

al., 2016).  

Studies have also implicated roles for CD39 and CD73 in allogeneic mouse models of 

GVHD. Inhibition of aurora kinase A and JAK2 with the dual antagonist AJI-214, increases 

CD39 expression on the cell surface of Treg cells to promote degradation of extracellular 

ATP and reduce GVHD (Betts et al., 2017). Furthermore, injection of another dual aurora 

kinase A/JAK2 antagonist AJI-100 (50 mg/kg, injected i.p. daily, days 0-14) suppressed 

expansion of activated human CD4+ T cells, Th17 cells, CD8+ T cells, and improved survival 

in the humanised NSG mouse model of GVHD (Betts et al., 2017). This effect was shown to 

be mediated through human CD39hi cells (Gu et al., 2016b). In an allogeneic mouse model of 

GVHD, Tsukamoto et al. (2012) demonstrated that pharmacological blockade of CD73 using 

APCP (50 mg/kg, injected i.p. daily, days 0-6), increases disease-related mortality. Similarly, 

Wang et al. (2013) demonstrated APCP injection (20 mg/kg injected i.v. twice weekly) also 

increases GVHD mortality, and increases splenic CD4+ and CD8+ T cell numbers and serum 

IFN-γ and IL-6 concentrations. Although both these studies used APCP as a CD73 inhibitor, 

this compound also blocks CD39 (Covarrubias et al., 2016), so a role for CD39 in this 

process cannot be excluded. However, genetic deficiency of CD73 also increases histological 

damage of target organs, splenic CD4+ and CD8+ T cell numbers and serum IFN-γ and IL-6 

concentrations and worsens mortality in allogeneic mouse models of GVHD (Tsukamoto et 

al., 2012, Wang et al., 2013).  

In human allogeneic MLRs, human gingiva-derived mesenchymal stem cells fail to reduce T 

cell suppression in the presence of APCP (200-500 μM) or POM-1(100 μM) (Huang et al., 

2017). Whilst, transfer of human gingiva-derived mesenchymal stem cells into humanised 

NOD/SCID mice reduced histological damage, IL-4, IL-17, IFN-γ, IL-2 and TNF-α 

production by T cells, and mortality, mediated through adenosine production. Notably, these 
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effects are lost if these cells were incubated with POM-1 (100 μM) prior to transplantation 

(Huang et al., 2017).  

In conclusion, whilst CD39 and CD73 have been shown to be important in reducing disease 

severity in allogeneic mouse models, the role of these ecto-enzymes in disease development 

in a humanised NSG mouse model of GVHD has not been investigated and studies in humans 

are limited.  

1.10.1.4. A2A in GVHD 

The role of A2A has also been implicated in GVHD in allogeneic mouse models of this 

disease. The non-selective adenosine receptor antagonist caffeine (10 mg/kg injected i.p. day 

0-6, and 3-5 times a week onwards) worsens mortality (Tsukamoto et al., 2012). Moreover, 

activation of A2A was identified as the adenosine receptor subtype responsible for exerting 

anti-inflammatory effects in allogeneic mouse models of GVHD, as blockade with the A2A 

antagonist SCH58261, but not the A2B antagonist MRS1754 (both 2 mg/kg, injected i.p. daily 

day -2-12) increased serum TNF-α, IFN-γ and IL-6, and CD4+ and CD8+ T cell numbers, and 

worsened mortality (Wang et al., 2013). Additionally, genetic deficiency of A2A increased 

CD4+ and CD8+ T cell numbers (Tsukamoto et al., 2012, Wang et al., 2013), but the effect on 

mortality was not reported in either study.  

Supporting the role of A2A in GVHD, Lappas et al. (2010) demonstrated that treatment with 

the A2A receptor agonist ATL-146e increased serum IL-10, and reduced serum IFN-γ and 

IL-6. Furthermore, ATL-146e reduced activated splenic CD4+ and CD8+ T cell numbers, 

decreased T cell infiltration into target organs and reduced weight loss and mortality in an 

allogeneic mouse model of GVHD. ATL-146e, as well as the other agonists ATL-370 and 

ATL-1223, also increased donor derived Treg cells in both the skin and colon in this same 

model (Han et al., 2013). Finally, Amarnath et al. (2015) demonstrated that bone derived 
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mesenchymal stromal cells reduced IFN-γ- and TNF-α-producing leukocytes, and reversed 

disease. This beneficial effect is abrogated by the A2A antagonist ZM241385 (1.5 mg/kg 

injected i.p. daily days 20-35), which prevented T cell suppression, worsened disease and 

reduced survival in a humanised mouse model of GVHD (Amarnath et al., 2015). 

1.10.1.5. Summary 

Combined, the above shows that purinergic signalling plays an important role in disease 

development in allogeneic mouse models of GVHD. Extracellular ATP, released at sites of 

damage during transplantation can activate P2X7 to promote T cell activation, pro-

inflammatory cytokine release and damage to target organs, leading to further ATP release 

and a feedforward loop of inflammation promoting GVHD. Degradation of extracellular ATP 

to adenosine by the ecto-enzymes CD39 and CD73, can then promote A2A activation and 

reduce GVHD (Figure 1.5.). However, the role of this signalling system in humanised mouse 

models of GVHD remains unknown. Whether ATP release activates P2X7 to promote 

GVHD, and whether degradation of ATP to adenosine by CD39 and CD73 and activation of 

adenosine receptors reduces GVHD remains to be fully elucidated in humanised mouse 

models.  

1.10.2. Purinergic Signalling in Skin Biology and Disease 

There is a well-established role for purinergic signalling in the skin. The roles of P2 and 

adenosine receptors, as well as ecto-enzymes on skin cells and in a number of skin diseases, 

is comprehensively reviewed by Burnstock et al. (2012). The role of P2X7 in skin biology 

and psoriasis is discussed below.  

 



www.manaraa.com

55 
 

 

 ATP is released during 
the initial stages of inflammatory damage of GVHD, ATP is released. ATP activates P2X7 on APCs, 
such as DCs, which leads to upregulation of the costimulatory molecules CD80 and CD86, which 
leads to increased Th1 activation and IFN-γ release. This IFN-γ release up-regulates P2X7 expression 
on APCs and propagates further tissue damage, resulting in further ATP release and a feed-forward 
loop of inflammation. However, degradation of ATP to ADP and AMP by CD39, and subsequently to 
adenosine by CD73, can activate A2A receptors on Treg cells (and mesenchymal stem cells; not 
shown) to reduce GVHD. Abbreviations; ADP, adenosine diphosphate, AMP, adenosine 
monophosphate, APC, antigen presenting cell, ATP, adenosine triphosphate, DC, dendritic cell, 
IFN-γ, interferon gamma. 

 

1.10.2.1. P2X7 in Skin Biology 

P2X7 is present on a number of skin cell types including keratinocytes, as well as skin 

resident DCs including LCs (Georgiou et al., 2005, Tran et al., 2010). Fluorescence based 

immunostaining of normal skin found P2X7 to be present solely in the stratum corneum of 

normal skin (Greig et al., 2003), but epidermal P2X7 was not detected by chromogen-based 

immunohistochemistry (Pastore et al., 2007). P2X7 has been implicated in a number of skin 

disorders, including AD and ICD. P2X7 is up-regulated in the epidermal basal layer of 

inflamed skin of AD patients compared to normal human skin (Pastore et al., 2007) and in 

Figure 1.5. Purinergic signalling in allogeneic mouse models of GVHD.  
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murine CHS, a model of AD (Weintraub et al., 2015). Moreover, both pharmacological 

blockade and genetic deficiency of P2X7 impairs CHS responses in mice due to the absence 

of P2X7-mediated IL-1β release from DCs (Weber et al., 2010). Similarly, both 

pharmacological blockade and genetic deficiency of P2X7 impair oedema, IL-1β production 

and neutrophil infiltration in a murine model of croton oil-induced ICD (Da Silva et al., 

2013). Additionally, P2X7 on mast cells is involved in retinoid-induced ICD, mediated by 

aberrant release of ATP within the skin and increased P2X7 expression on skin mast cells 

(Kurashima et al., 2014). Thus, P2X7 activation is important in promoting AD and ICD but 

its potential role in psoriasis remains largely unknown but as discussed below a role for P2X7 

in this inflammatory disease is emerging. 

1.10.2.2. P2X7 in Psoriasis 

Although the role of P2X7 has not been investigated in animal models of psoriasis, in vitro 

studies directly, and in vivo studies indirectly, support a role for P2X7 in psoriasis 

pathogenesis. As mentioned above (Section 1.6) antimicrobial release is implicated in 

psoriasis pathogenesis. LL-37 induces ATP release, caspase-1 activation and IL-1β release 

from LPS-primed monocytes, which was inhibited in vitro by addition of oxidised ATP 

(oATP) (100 μM) or KN-62 (0.1 μM) (Elssner et al., 2004). LL-37 activation of P2X7 also 

inhibits skin fibroblast migration, an effect inhibited by addition of BBG (10 μM) (Kumagai 

et al., 2013).  

Alternatively, β-defensins and S100A proteins can cause ATP release, which activates P2X7 

via an autocrine mechanism (Lioi et al., 2015, Wanke et al., 2016, Kim et al., 2018b). Human 

β-defensin-3 also causes up-regulation of CD86 expression on monocytes, which can be 

prevented by KN-62 (2 μM) (Lioi et al., 2015). Additionally, both human β-defensin-2 and -3 

induce TNF-α and CXCL8 release from LPS-activated human monocytic THP-1 cells, which 

can be abrogated by oATP (350 μM) or A438079 (10 μM) (Wanke et al., 2016). Finally, 
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activation of P2X7, and subsequently the inflammasome, by S100A12 (the S100 protein most 

associated with psoriasis activity (Wilsmann-Theis et al., 2015)) can be inhibited by suramin 

(0.1 μM) or A804598 (1 μM) (Kim et al., 2018b).  

ATP promotes proliferation of the human HaCaT keratinocyte cell line (Burrell et al., 2008), 

suggesting a role for P2X7 in the characteristic hyperproliferation in psoriasis. However, this 

proliferation relied on co-stimulation with parathyroid hormone related protein, which is not 

associated with psoriasis activity (Sánchez Regaña et al., 2005). Alternatively, IFN-γ, which 

is important in promoting psoriasis (Bowcock et al., 2001, Haider et al., 2008), can 

upregulate the expression of P2X7 in primary keratinocytes (Pastore et al., 2007). 

Furthermore, BzATP injection into normal human skin explants induces increased release of 

IL-1β, IL-6 and TNF-α, which is abrogated by KN-62 (1 μM) (Killeen et al., 2013). P2X7 

activation by BzATP also induces the functional maturation, including the up-regulation of 

CD86 expression, on cutaneous DCs to promote Th17 responses (Killeen et al., 2013). 

Finally, P2X7 mRNA is up-regulated in non-lesional skin of psoriasis patients compared to 

healthy controls (Killeen et al., 2013). Combined, the findings above suggest P2X7 activation 

on DCs by ATP or antimicrobial peptides can promote inflammation through pro-

inflammatory cytokine release and/or T cell activation. Furthermore, P2X7 activation on 

neutrophils or macrophages may also promote pro-inflammatory cytokine release (Barbera-

̀Cremades et al., 2012, Karmakar et al., 2016). These cytokines may up-regulate P2X7 

expression in the epidermis, leading to a feed-forward loop of inflammation (Figure 1.6). 

1.11. Summary 

GVHD remains a major complication following HSCT and current therapies involve general 

immunosuppression leaving patients susceptible to infection or relapse (Auletta and Cooke, 

2009). With >25,000 HSCTs performed annually worldwide (D'Souza and Fretham, 2017), 
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and the incidence of GVHD approximately 50% (Jagasia et al., 2012), there is a dire need for 

novel therapeutics. The presence of purinergic signalling molecules on immune cells and the 

role of purinergic signalling in immunity is well established and represents a potential 

therapeutic target. In relation to GVHD, P2X7 activation drives disease progression, while 

the structure of the CD39/CD73/A2A pathway limits this progression. However, the majority 

of this data is based on allogeneic mouse models, and the role of purinergic signalling in 

pre-clinical humanised mouse models is completely lacking and is limited in humans with 

GVHD. Investigation of the role of purinergic signalling in pre-clinical humanised mouse 

models will provide insight into the role of this signalling system, and possibly identify 

therapies in a pre-clinical mouse model of GVHD. 

 

 Initiation of psoriasis could cause the release of 
DAMPS such as ATP, or antimicrobial peptides such as LL-37. This could act in a paracrine 
manner and activate, and up-regulate P2X7 in the skin, or alternatively activate P2X7 on a 
number of cell types. Activation of P2X7 on neutrophils, macrophages and DCs may result in 
IL-1β release which can exacerbate psoriasis. LL-37 also inhibits neutrophil and macrophage 
cell death (not depicted). Alternatively, ATP or LL-37 activation of P2X7 on DCs may result 
in IL-23 release leading to Th17 activation, proliferation and migration into the skin, where 
Th17 cells exacerbate psoriasis through IL-17 release. Alternatively, IL-2 release by T cells 
in psoriasis can also cause Th17 cell differentiation and inflammation, or Th1 cell 
differentiation which, along with macrophages, promotes inflammation through IFN-γ 

Figure 1.6. The potential role of P2X7 in psoriasis.  
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release. IFN-γ has also previously been shown to up-regulate P2X7 expression. 
Abbreviations: ATP, adenosine triphosphate, DAMP, danger associated molecular pattern, 
DC, dendritic cell, IFN-γ, interferon gamma, IL, interleukin, IMQ, imiquimod. 

 

Psoriasis affects 1-3% of the general population of Western countries (Lebwohl et al., 2014) 

and remains a significant financial burden. The role of purinergic signalling in skin biology 

and disease is well characterised, but the role of P2X7 in psoriasis is limited to in vitro 

studies and immunohistodensity studies of patient samples. The IMQ-induced psoriasis-like 

inflammation mouse model represents a simple and efficient model to study psoriasis 

pathogenesis and utilising this model may provide insights into the role of P2X7 in psoriasis. 

Furthermore, the skin is a target organ of GVHD, and thus investigation of the role of 

purinergic signalling in psoriasis may help elucidate the role of this pathway in other 

inflammatory skin disorders including cutaneous GVHD. 

1.12. Aims 

1.12.1. General Aim 

This thesis aims to elucidate the role of purinergic signalling, focussing on the roles of P2X7, 

CD39, CD73, and A2A in a humanised mouse model of GVHD, and the role of P2X7 in IMQ-

induced psoriasis-like inflammation in mice.  

1.12.2. Specific Aims 

The specific aims of this PhD thesis are; 

i. To investigate the role of P2X7 in GVHD in a humanised NSG mouse model using a 

short-term (Chapter 3) and long-term (Chapter 4) regime with the P2X7 antagonist 

BBG.  
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ii. To investigate the role of the CD39 and CD73 pathway in GVHD in a humanised 

NSG mouse model using the CD39/CD73 antagonist APCP (Chapter 5).   

iii. To investigate the role of A2A in GVHD in a humanised NSG mouse model using the 

general adenosine receptor antagonist caffeine (Chapter 5), and the A2A agonist 

CGS21680 (Chapter 6).  

iv. To investigate the role of P2X7 in an IMQ-induced psoriasis-like disease model using 

the P2X7 antagonists BBG and A804598 and P2X7 knock-out mice (Chapter 7). 

 

 

Chapter 2: Increased Splenic Human CD4+:CD8+ T Cell Ratios, Serum Human 

Interferon-γ and Intestinal Human Interleukin-17 Are Associated with 

Clinical Graft-versus-Host Disease in Humanised Mice 
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2.2. Abstract 
Graft-versus-host disease (GVHD) is a frequent complication following allogeneic 

hematopoietic stem cell transplantation (HSCT) with current therapies limited to general 

immunosuppression. Humanised mouse models of GVHD are emerging as valuable 

intermediaries to allow translation of findings from allogeneic mouse models to humans to 

prevent and treat this disease, but such models require further characterisation. In this study, 

humanised mice were generated by injecting immunodeficient non-obese diabetic severe 

combined immunodeficiency interleukin-2 receptor γ common chain null (NSG) mice with 

human peripheral blood mononuclear cells (hPBMCs). Clinical GVHD development was 

assessed using established scoring criteria (weight loss, posture, activity, fur texture and skin 

integrity). Differences between humanised NSG mice that developed clinical or subclinical 

GVHD were then compared. Both groups of mice demonstrated similar frequencies of human 

leukocyte engraftment. In contrast, mice that developed clinical GVHD demonstrated 

increased histological damage compared to mice with subclinical GVHD. Furthermore, mice 

with clinical GVHD exhibited increases in the splenic human CD4+:CD8+ T cell ratio, serum 

human interferon (IFN)-γ and intestinal human interleukin (IL)-17 expression compared to 

mice with subclinical GVHD. These cellular and molecular changes could be used as 

potential markers of disease progression in this preclinical model. This study also provides 

further insights into GVHD development which may be relevant to human HSCT recipients. 

2.3. Highlights 
• GVHD development in humanised mice is variable with the majority developing clinical 

disease but a small proportion with subclinical disease. 

• Mice with clinical GVHD demonstrate increased splenic human CD4+:CD8+ T cell ratios 

compared to mice with subclinical GVHD. 
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• Mice with clinical GVHD exhibit increased serum human interferon (IFN)-γ and 

intestinal human interleukin (IL)-17 expression compared to mice with subclinical 

GVHD. 

2.4. Introduction 
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy for 

haematological malignancies and other blood disorders. However, graft-versus-host disease 

(GVHD) occurs in approximately half of the HSCTs conducted annually (Pavletic and 

Fowler, 2012) and leads to a mortality rate of approximately 20% in these patients (Markey et 

al., 2014). GVHD emerges when effector donor T cells mount an immune response against 

host tissues (Billingham, 1965). GVHD is characterised by three stages. The first stage is 

release of danger signals from cells damaged by the underlying disease and/or conditioning 

regimes, followed by CD4+ T cell activation by antigen presenting cells resulting in cytokine 

release, and finally CD4+ and CD8+ T cell-mediated inflammatory damage (Ferrara et al., 

1999, Ferrara et al., 2009). This damage can be propagated by the “cytokine storm” in the 

latter stage, wherein Th1 and Th17 cells release pro-inflammatory cytokines such as 

interferon (IFN)-γ (Ferrara et al., 1999, Ferrara et al., 2009) and interleukin (IL)-17 (Yi et al., 

2009, Gartlan et al., 2015), respectively, perpetuating a feed forward loop of inflammation. 

Conversely, regulatory T (Treg) cells can modulate effector T cells to reduce T cell-mediated 

inflammatory damage in GVHD (Edinger et al., 2003). Current therapies for GVHD are 

limited, with the standard therapy being general immunosuppression achieved through 

steroids, leaving patients susceptible to subsequent infections and/or disease relapse (Auletta 

and Cooke, 2009). Therefore, greater understanding of the mechanisms important in GVHD 

and elucidation of new therapies is essential to improve outcomes in HSCT patients and 

prevent GVHD.  
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Current studies into potential therapeutics for GVHD are investigated in allogeneic mouse 

models before translation to the clinic. However, potentially due to large species differences 

between humans and mice, therapies that delay or prevent GVHD in allogeneic mouse 

models often do not translate to the clinic. To address this, previous studies have developed a 

range of preclinical “humanised” mouse models (Shultz et al., 2007). The most commonly 

used of these models is the humanised immunodeficient non-obese diabetic severe combined 

immunodeficiency interleukin-2 receptor γ common chain null (NSG) mouse, developed by 

Shultz et al. (2005) wherein mice readily engraft human peripheral blood mononuclear cells 

(hPBMCs) due to three defects. First, the Scid mutation prevents V(D)J recombination to 

impair B and T cell development (Bosma et al., 1983). Second, deletion of the Il2rg gene 

results in absence of natural killer (NK) cells. Third, a polymorphism in the Sirpa gene, 

present due to backcrossing onto a NOD background, promotes phagocytic tolerance of 

xenogeneic leukocytes (Yamauchi et al., 2013). Human T cells recognise major 

histocompatibility complex (MHC) I and II of NSG mice to cause GVHD in this humanised 

mouse model (King et al., 2009), demonstrating that human T cell responses can be 

investigated in vivo to better understand this disease in a preclinical setting.  

The humanised NSG model of GVHD is emerging as a valuable intermediate to allow 

translation of findings identified in allogeneic mouse models to human clinical trials. For 

example, based on an earlier study in an allogeneic mouse model of GVHD (Hill et al., 

1999), King et al. (2009) demonstrated tumour necrosis factor (TNF)-α blockade could 

reduce GVHD severity in this humanised mouse model, and Etanercept, an anti-TNF-α 

monoclonal antibody (mAb) has subsequently shown efficacy in clinical trials (Busca et al., 

2007). More recently, Burger et al. (Burger et al.) demonstrated an anti-CCR5 mAb (PRO 

140) could reduce GVHD in humanised NSG mice, with this mAb now being investigated in 

clinical trials (Green and Dhody). Notably, the discovery of Treg cells, and their therapeutic 
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potential in GVHD has progressed from allogeneic mouse models (Edinger et al., 2003), to 

humanised NSG models (Abraham et al., 2012, Hannon et al., 2014), and finally to clinical 

trials (Heinrichs et al., 2016). Therefore, the humanised NSG model offers a valid preclinical 

model to test therapies for translation to the clinic. Although this mouse model has offered 

numerous advancements, the characterization of GVHD in these mice has not been 

adequately described.  

 

2.5. Objective 
The current study aimed to investigate the characteristics of GVHD that were observed in 

humanised NSG mice injected with human PBMCs that developed clinical disease compared 

to those mice that displayed subclinical GVHD. This study demonstrated that all humanised 

NSG mice had similar engraftment of human leukocytes, which were predominantly T cells. 

In contrast, humanised NSG mice with clinical GVHD demonstrated greater splenic 

CD4+:CD8+ T cells ratios, serum human IFN-γ concentrations and intestinal human IL-17 

expression than humanised mice with subclinical GVHD. These cellular and molecular 

changes could potentially be used as biomarkers of disease progression in this preclinical 

model and provide insights into GVHD development which may be applicable to human 

HSCT recipients. 

 

2.6. Materials and Methods 

2.6.1. Antibodies for Flow Cytometry 

Fluorescein isothiocyanate (FITC)-conjugated mouse anti-hCD4 (clone: RPA-T4), and 

mouse anti-hCD45 (clone: HI30); R-phycoerythrin (PE)-conjugated mouse anti-hCD3 (clone: 

UCHT1) and mouse anti-hCD8 (clone: RPA-T8); peridinin chlorophyll protein 

(PerCP)-Cy5.5 conjugated mouse anti-hCD4 (clone: L200) and rat anti-mCD45 (clone: 30-
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F11); and allophycocyanin (APCy)-conjugated mouse anti-hCD3 (clone: UCHT1) and mouse 

anti-hCD19 (clone: HIB19) mAb were obtained from BD (San Jose, CA, USA). 

2.6.2. Mice 

All mouse experiments were conducted in accordance with approval by the Animal Ethics 

Committee, University of Wollongong (Wollongong, Australia). Female NSG mice, 

originally obtained from The Jackson Laboratory (Bar Harbor, ME, USA), were bred at the 

Westmead Animal Research Facility (Westmead, Australia) or Australian BioResources 

(Moss Vale, Australia). NSG mice, obtained at 6-10 weeks of age, were housed in filter top 

cages in Tecniplast (Buggugiate, Italy) isolation cabinets, and provided with autoclaved food 

and water, ad libitum. Mice were allowed to acclimatise for one week prior to injection.  

2.6.3. Isolation of Human PBMCs  

All experiments with human blood were conducted in accordance with approval by the 

Human Ethics Committee, University of Wollongong. Peripheral blood was collected by 

venepuncture into VACUETTE® lithium heparin tubes (Greiner Bio-One; Frickenhausen, 

Germany). Whole blood, diluted with an equal volume of sterile phosphate buffered saline 

(PBS) (Thermo Fisher Scientific, Waltham, USA), was underlaid with Ficoll-Paque PLUS 

(GE Healthcare; Uppsala, Sweden) and centrifuged (560 x g for 30 min). hPBMCs were 

collected and washed with PBS (430 x g for 5 min) and resuspended in PBS.  

2.6.4. Humanised NSG Mouse Model of GVHD 

NSG mice were injected intra-peritoneally (i.p) with 10 x 106 hPBMCs in 100 μL sterile PBS 

(hPBMC group) or with 100 μL sterile PBS alone (control group) (day 0). Mice were 

checked for engraftment of hPBMCs at 3 weeks post-injection by immunophenotyping tail 

blood. Mice were monitored up to week 8 for signs of GVHD using a scoring system 

(Chapter 3) giving a total clinical score out of 10 (Table 1). Mice were euthanised at 8 weeks 

post-injection, or earlier if exhibiting a clinical score of ≥ 8 or a weight loss of ≥ 10%, 
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according to the approved animal ethics protocol. Mice are assigned a score out of 2 for each of 

the criterion outlined to give a total score of 10 (as previously described (Chapter 3)). Humanised 

mice with clinical score < 3 were defined as subclinical GVHD, and mice with a clinical score ≥ 3 

were defined as clinical GVHD. 

 

GRADE 0 1 2 
Weight loss

a
 < 5% 5% to 10% > 10% 

Posture Normal Hunching noted only at rest Severe hunching 
Activity Normal Mild to moderately decreased Stationary unless stimulated 
Fur texture Normal Mild to moderate ruffling Severe ruffling 
Skin Integrity Normal Scaling of paws/tail Obvious areas of involved skin 
a Percent of starting weight (day 0) 
 

2.6.5. Immunophenotyping by Flow Cytometry 

Tail blood (20-30 μL) was collected into 200 μL of citrate solution (Sigma-Aldrich), diluted 

with PBS and centrifuged (500 x g for 5 min). Spleens from euthanised mice were 

mechanically dissociated, filtered through 70 μm nylon filters (Falcon Biosciences, New 

York, NY, USA) and centrifuged (300 x g for 5 min). Blood and spleen cells were incubated 

with ammonium chloride potassium (ACK) lysis buffer (150 mM NH4Cl, 1 mM KHCO3, 0.1 

mM Na2CO3, pH 7.3) for 5 min and washed in PBS (300 x g for 5 min). Cells were then 

washed in PBS containing 2% foetal bovine serum (300 x g for 3 min), and incubated for 30 

min with fluorochrome-conjugated mAb, including respective isotype controls. Cells were 

washed with PBS (300 x g for 3 min) and data was collected using a BD LSRII Flow 

Cytometer (using band pass filters 515/20 for FITC, 575/26 for PE, 675/40 for PerCP-Cy5.5, 

and 660/20 for APCy). The relative percentages of cells were analysed using FlowJo software 

v8.7.1 (TreeStar Inc., Ashland, OR, USA).  

Table 2.1. Scoring system for clinical GVHD.  
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2.6.6. Histological Analysis 

Tissues from euthanised mice were incubated overnight in neutral buffered (10%) formalin 

(Sigma-Aldrich). Fixed tissues were removed, coated in paraffin, sectioned (5 μm) and 

stained with haematoxylin and eosin (POCD; Artarmon, Australia). Histological changes 

were assessed using a Leica (Wetzlar, Germany) DMRB microscope and Leica Application 

Software version 4.3. 

2.6.7. RNA Isolation and cDNA Synthesis 

Tissues from euthanised mice or freshly isolated hPBMCs were stored in RNAlater (Sigma-

Aldrich) at -20°C. RNA was isolated using TRIzol reagent (Thermo Fisher Scientific) as per 

the manufacturer’s instructions. Isolated RNA was immediately converted to complementary 

DNA (cDNA), using the qScript cDNA Synthesis Kit (Quanta Biosciences, Beverly, MA, 

USA) as per the manufacturer’s instructions, and RNA stored at -80°C. cDNA was checked 

by PCR amplification of the house keeping gene glyceraldehyde 3-phosphate dehydrogenase 

(Invitrogen, Carlsbad, CA, USA) for 35 cycles (95°C for 1 min, 55°C for 1 min, and 72°C for 

1 min) and a holding temperature of 4°C. Purity and size of amplicons were confirmed by 2% 

agarose gel electrophoresis.  

2.6.8. Quantitative Real-Time PCR  

Quantitative real-time PCR (qPCR) reactions of cDNA samples were using TaqMan 

Universal Master Mix II (Thermo Fisher Scientific) according to the manufacturer’s 

instructions, with VIC-labelled human hypoxanthine phosphoribosyl transferase 1 

(Hs99999909_m1) and FAM-labelled hIFN-γ (Hs00989291_m1), hIL-17 (Hs00936345_m1) 

and hFoxP3 (Hs01085834_m1) primers (Thermo Fisher Scientific). qPCR cycles consisted of 

two initial steps of 50°C for 2 min, and 95°C for 10 min and 40 cycles of 95°C for 15 s, and 

60°C for 1 min. Reactions were conducted in triplicate using a Roche Diagnostics 

(Indianapolis, IN, USA) LightCycler 480, and analysis was conducted using LightCycler480 
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software v1.5.1. Human gene expression is shown relative to expression in cDNA from 

freshly isolated donor hPBMCs. 

2.6.9. ELISA 

Blood, collected via cardiac puncture from euthanised mice, was incubated for 1 h at RT and 

centrifuged (1,700 x g for 10 min). Supernatants were re-centrifuged (1,700 x g for 10 min) 

and sera stored at -80°C. Serum cytokine concentrations were measured using a hIFN-γ 

Ready-Set-Go! ELISA Kit (eBioscience, San Diego, CA, USA) as per the manufacturer’s 

instructions. Absorbances (450 and 570 nm) were measured using a SpectraMax Plus 384 

(Molecular Devices, Sunnyvale, CA, USA). 

2.6.10. Statistical Analysis 

Data is given as mean ± standard error of the mean (SEM). Statistical differences were 

calculated using Student’s t-test for single comparisons or one-way analysis of variance 

(ANOVA) with Tukey’s post-hoc test for multiple comparisons. Weight and clinical score 

were analysed using a repeated measures two-way ANOVA with Tukey’s post-hoc test for 

multiple comparisons. Median survival times (MST) were compared using the log-rank 

(Mantel-Cox) test. Proportions of mice sacrificed prior to week 8 (mortality rates) were 

compared using Fisher’s Exact test. All statistical analyses and graphs were generated using 

GraphPad Prism 5 for PC (GraphPad Software, La Jolla, CA, USA). P < 0.05 was considered 

significant for all tests. 

 

2.7. Results 

2.7.1. Clinical GVHD Development Varies in Humanised NSG Mice 

NSG mice, injected i.p. with either saline (control) or hPBMCs, were monitored for physical 

manifestations of GVHD over 8 weeks. After 4 weeks, humanised NSG mice with GVHD 

started to exhibit clinical signs of disease (Figure 2.1.A.). By end-point it became apparent 
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that hPBMC-injected mice segregated into one of two groups based on clinical score (Table 

2.1.); one group with scores ≥ 3 (clinical GVHD) and another group with scores < 3 

(subclinical GVHD) (Figure1A). Mice with clinical scores ≥ 3 exhibited weight loss, reduced 

activity, postural changes (hunching) and fur ruffling, with skin involvement in some mice, 

whilst mice with clinical scores < 3 was solely attributed to fur ruffling and/or postural 

changes (data not shown). The mean clinical score over the course of the experiment in 

humanised mice with clinical GVHD was greater than both control mice and mice with 

subclinical GVHD (P < 0.0001 and P = 0.0010, respectively) (Figure 2.1.B.). Weight loss 

alone is indicative of GVHD development (Cooke et al., 1996). Notably, control mice and 

humanised mice with subclinical GVHD continued to gain weight over the entire 8 weeks, 

however, humanised mice with clinical GVHD started to lose weight after 4 weeks 

(Figure1B). Although this difference was obvious after 4 weeks, the weight loss was not 

statistically significant between groups (P = 0.2871). Humanised mice with clinical GVHD 

had a MST of 50 days, which was significantly worse than control mice (P < 0.0001) and 

humanised mice with subclinical GVHD (P < 0.0001) where all mice survived for 8 weeks 

(Figure1C). Humanised mice with clinical GVHD exhibited an 80% mortality rate over 8 

weeks, which was significantly greater than control mice (P < 0.0001) or humanised mice 

with subclinical GVHD (P = 0.0350) (Figure 2.1.C.).  

2.7.2. Increased Histological Damage and Leukocyte Infiltration is Associated 

with Clinical GVHD 

GVHD targets the liver, gastro-intestinal tract and skin in humanised NSG mice (King et al., 

2009), similar to humans (Ferrara et al., 2009). To compare control NSG mice and 

humanised NSG mice with clinical or subclinical GVHD, histological analyses of target 

tissues were conducted, as well as spleens to examine evidence of engraftment. As expected, 

control mice demonstrated normal architecture and minimal 
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 (a–c) NSG mice were injected 
i.p. with PBS (control) (n = 6) or 10 x 106 hPBMCs in PBS (n = 13) and monitored for GVHD over 8 
weeks. NSG mice were monitored for (A) clinical score, (B) weight loss and (C) survival. Humanised 
mice with subclinical GVHD (n = 3) were defined as having a clinical score < 3 and mice with 
clinical GVHD (n = 10) were defined as having a clinical score ≥ 3. Data represents (a, b) group 
means ± SEM, or (c) percent survival; *** P < 0.0001 compared to control mice, †† P < 0.01 and ††† P 
< 0.0001 compared to mice with subclinical GVHD. 

 

presence of leukocytes in spleens, livers, small intestines and skin (Figure2). Both humanised 

NSG mice with subclinical or clinical GVHD demonstrated leukocyte infiltration in spleens 

(Figure 2.2.), consistent with engraftment of hPBMCs. However, mice with subclinical 

GVHD demonstrated leukocyte infiltration and minor apoptosis in the liver, whilst mice with 

clinical GVHD demonstrated greater leukocyte infiltration and greater apoptosis compared to 

both control mice and humanised mice with subclinical GVHD (Figure 2.2.). Humanised 

mice with subclinical GVHD demonstrated leukocyte infiltration and minor damage to 

enterocytes and occasional crypt epithelial cell apoptosis in the small intestine (Figure 2.2.). 

Humanised mice with clinical GVHD demonstrated increased leukocyte infiltration and 

structural damage including rounding of villi, enterocyte loss and crypt epithelial cell 

apoptosis in the small intestine compared to mice with subclinical GVHD (Figure 2.2.). 

Humanised mice with subclinical GVHD demonstrated similar intact architecture and 

leukocyte infiltration to control mice in the skin, except for separation at the dermal 

subcutaneous boundary in the former group (Figure2.2.). The skin of humanised mice with 

Figure 2.1. Clinical GVHD development varies in humanised mice. 
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clinical GVHD demonstrated leukocyte infiltration, epidermal thickening, basal epithelial cell 

apoptosis and dermal-subcutaneous boundary separation (Figure 2.2.).  

 

 

GVHD. Tissue sections (spleen, liver, small intestine and skin) from control mice (left panels) or 
hPBMC-injected mice with subclinical GVHD (middle panels) or clinical GVHD (right panels) at end 
point were stained with haematoxylin and eosin, and images captured by microscopy. Each image is 
representative of three mice per group; bar represents 100 μm. 
 

Figure 2.2. Increased histological damage and leukocyte infiltration is associated with clinical  
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2.7.3. Similar Engraftment of hPBMCs in Mice with Subclinical and Clinical 

GVHD  

To confirm that NSG mice injected with hPBMCs engrafted human leukocytes, blood was 

collected at 3 weeks post-injection and spleens were collected at end-point and analysed by 

flow cytometry. Blood (Figure 2.3.A-D.) and spleens (Figure 2.3.E-J.) revealed both murine 

(m) and human (h) CD45+ cells in hPBMC-injected mice (Figure 2.3A, E.). As expected, 

control mice demonstrated mCD45+ but no hCD45+ cells in the blood and spleen (Figure 

2.1.B, F).  

The frequency of hCD45+ leukocytes were calculated as a percentage of total hCD45+ and 

mCD45+ cells. In the blood, mean hCD45+ engraftment was similar between mice with 

subclinical GVHD (15.1 ± 2.2 %, n = 3) and mice with clinical GVHD (15.3 ± 3.2, n = 10) 

(P= 0.9737) (Figure 2.3.B.). hCD45+ cells in the blood of hPBMC-injected mice were then 

analysed for the presence of hCD3+ (human T cells) and hCD19+ cells (human B cells) 

(Figure3A). NSG mice injected with hPBMCs showed the majority of engrafted human 

leukocytes were T cells. The mean percentage of T cells in blood did not differ between mice 

with subclinical GVHD (99.1 ± 0.1%, n = 3) or clinical GVHD (98.1 ± 0.4%, n = 10) (P = 

0.1500) (Figure 2.3.C.). The remaining cells in the blood were hCD3- and hCD19-, the 

frequencies of which did not differ between mice with subclinical GVHD (0.8 ± 0.1%, n = 3) 

or clinical GVHD (1.8 ± 0.4%, n = 10) (P = 0.1869) (Figure 2.3.D.).  

Similar to blood, mean hCD45+ engraftment in spleens was similar between mice with 

subclinical GVHD (90.9 ± 1.7%, n = 3) and clinical GVHD (87.7 ± 2.9%, n = 10, 

respectively) (P = 0.5880) (Figure 2.3.F.). Moreover, NSG mice injected with hPBMCs 

showed the majority of engrafted human leukocytes in spleens were T cells. The mean 

percentage of T cells in spleens did not differ between mice with subclinical GVHD (97.8 ± 

0.5%, n = 3) or clinical GVHD (98.4 ± 0.2%, n = 10) (P = 0.1942) (Figure 2.3.G.). The 
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remaining cells in spleens were hCD3- and hCD19-, the frequencies of which did not differ 

between mice with subclinical GVHD (2.2 ± 0.5%, n = 3) or clinical GVHD (1.6 ± 0.2%, n = 

10) (P = 0.1942) (Figure 2.3.H.).  

Further analysis of the splenic human T cells (hCD3+ hCD19- cells) (Figure 2.3.E.) revealed 

that mice with clinical GVHD demonstrated significantly greater proportions of hCD4+ T cell 

engraftment (85.1 ± 2.0%, n = 10) than mice with subclinical GVHD (45.5 ± 8.4%, n = 3) (P 

< 0.0001) (Figure 2.3.I.). Conversely, mice with clinical GVHD demonstrated significantly 

lower proportions of hCD8+ T cell engraftment (12.8 ± 1.7%, n = 10) than mice with 

subclinical GVHD (50.9 ± 8.8%, n = 3) (P < 0.0001) (Figure 2.3.I.). Moreover, mice with 

clinical but not subclinical GVHD demonstrated a significantly greater proportion of hCD4+ 

than hCD8+ T cells (P < 0.0001), resulting in higher splenic hCD4+:hCD8+ T cell ratios (8.5 

± 1.7, n = 10) than mice with subclinical GVHD (1.0 ± 0.3, n = 3) (P = 0.0418) (Figure 

2.3.J.). 

2.7.4. Increased Serum Human IFN-γ is Associated with Clinical GVHD 

IFN-γ has been implicated in GVHD pathogenesis (Ferrara, 2000) and correlates to worse 

disease in mice with allogeneic GVHD (Burman et al., 2007). Therefore, to determine if 

humanised NSG mice with GVHD demonstrate changes in hIFN-γ, mRNA expression and 

serum concentrations of this cytokine were analysed by qPCR and ELISA, respectively. 

There was a 3-fold increase in relative hIFN-γ expression in spleens from mice with clinical 

GVHD (0.7 ± 0.2, n = 3) compared to mice with subclinical GVHD (0.2 ± 0.1, n = 3) (P = 

0.0880) (Figure 2.4.A.). There was also a 1.5-fold increase in relative hIFN-γ expression in 

livers from mice with clinical GVHD (0.9 ± 0.1, n = 3) compared to mice with subclinical 

GVHD (0.6 ± 0.3, n = 3) (P = 0.2576) (Figure 2.4.B.). However, small intestines from 

humanised mice with subclinical GVHD or clinical GVHD demonstrated similar relative 

hIFN-γ expression (0.7 ± 0.3 vs 0.9 ± 0.1, n = 3) (P = 0.5907) (Figure 2.4.C.). Notably, mice 
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with clinical GVHD demonstrated significantly increased serum human IFN-γ concentrations 

(42.9 ± 2.7 ng/mL) compared to mice with subclinical GVHD (25.0 ± 5.5 ng/mL) (P = 

0.0155) (Figure 2.4.D.). 

 

ratios. (a-d) Blood (3 weeks post-hPBMC injection) and (e-f) spleens (end-point) from mice were 
analysed by flow cytometry. Representative gates and quadrant regions are shown (a, e). (b - f) 
hCD45+ leukocytes (hCD45+ mCD45-) are expressed as a percentage of total leukocytes (hCD45+ 
mCD45- + hCD45- mCD45+). (c, g) hCD3+ hCD19- cells and (d, h) hCD3- hCD19- cells are expressed 
as a percentage of hCD45+ leukocytes. hCD4+ and hCD8+ T cells are expressed as a percentage of 
hCD3+ T cells and (j) used to determine hCD4+:hCD8+ T cell ratios. (b-d, f-j) Data represents group 
means ± SEM; symbols represent individual mice; ** P < 0.005, *** P < 0.0001 compared to control 
mice; † P < 0.05, ††† P < 0.0001 compared to corresponding cells in mice with subclinical GVHD; ### 
P < 0.0001 compared to corresponding CD8+ T cells. 

Figure 2.3. Humanised mice with clinical GVHD exhibit increased human CD4+:CD8+ T cell 
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concentrations. The relative expression of hIFN-γ in (a) spleens, (b) livers and (c) small intestines 
from mice with subclinical and clinical GVHD were examined by qPCR. Data represents group 
means ± SEM (n = 3 per group); symbols represent individual mice. (d) Serum hIFN-γ concentrations 
were analysed by ELISA. Data represents group means ± SEM (subclinical GVHD n = 3, clinical 
GVHD n = 5); ** P < 0.005 compared to mice with subclinical GVHD. 

2.7.5.  Increased Intestinal hIL-17 is Associated with Clinical GVHD 

IL-17 exacerbates GVHD in allogeneic mouse models of this disease (Carlson et al., 2009, 

Kappel et al., 2009) and in HSCT patients (Dander et al., 2009). Whilst, FoxP3 Treg cells 

exert anti-inflammatory effects in allogeneic (Edinger et al., 2003) and humanised mouse 

models (Cao et al., 2009), as well as in humans (Trzonkowski et al., 2009) to prevent GVHD. 

To further explore potential immunological differences between humanised NSG mice with 

subclinical or clinical GVHD, relative mRNA expression of hIL-17 and hFoxP3 in the 

spleen, liver and small intestine was assessed by qPCR. Relative splenic hIL-17 expression in 

mice with clinical GVHD (0.5 ± 0.2, n = 3) was 40% lower compared to mice with 

subclinical GVHD (1.3 ± 0.5, n = 3) (P = 0.2505) (Figure 2.5.A). However, hepatic hIL-17 

expression was similar between mice with clinical GVHD (1.5 ± 0.9, n = 3) and subclinical 

GVHD (1.2 ± 0.2, n = 3) (P = 0.7717) (Figure 2.5.B.). Notably, intestinal hIL-17 expression 

was evident in mice with clinical GVHD (1.8 ± 0.4, n = 3) but was absent in mice with 

subclinical GVHD (0.0 ± 0.0, n = 3) (Figure 2.5.C.). Relative splenic hFoxP3 expression was 

Figure 2.4. Humanised mice with clinical GVHD demonstrate increased serum hIFN-γ   
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similar in humanised mice with subclinical GVHD (1.2 ± 1, n = 3) or clinical GVHD (0.6 ± 

0.2, n = 3) (P = 0.5669) (Figure 2.5.D.). Relative hepatic hFoxP3 expression was also similar 

in humanised mice with subclinical GVHD (1.3 ± 0.5, n = 3) or clinical GVHD (0.6 ± 0.2 and 

2.0 ± 0.8, n = 3) (P = 0.4838) (Figure 2.5.E.). However, there was a 17-fold but variable 

increase in intestinal hFoxP3 expression in mice with clinical GVHD (0.5 ± 0.3, n = 3) 

compared to mice with subclinical GVHD (0.03 ± 0.01, n = 3) (P = 0.2020) (Figure 2.5.F.). 

 

The relative expression of (a-c) hIL-17 and (d-f) hFoxP3 in (a, d) spleens, (b, e) livers and (c, f) small 
intestines from mice with subclinical and clinical GVHD were examined by qPCR. Data represents 
group means ± SEM (n = 3 per group); symbols represent individual mice. 

Figure 2.5. Humanised mice with clinical GVHD demonstrate increased intestinal hIL-17. 



www.manaraa.com

79 
 

2.8. Discussion 
Humanised NSG mouse models of GVHD are used as preclinical models to test potential 

therapeutics (Shultz et al., 2007), however these models have not been fully characterised. 

The current study compared humanised NSG mice with subclinical and clinical GVHD, 

which paralleled the degree of histological disease. Notably, mice with clinical GVHD 

exhibited greater splenic hCD4+:hCD8+ T cell ratios, serum hIFN-γ concentrations and 

intestinal hIL-17 expression than mice with subclinical GVHD.  

Humanised mice with a clinical score < 3 were defined as having subclinical GVHD, and 

only showed signs of mild to moderate fur ruffling and/or hunching only at rest. These two 

criteria compared to the other three criteria used are relatively subjective (Naserian et al., 

2018), and thus may be attributed to events such as being recently awoken rather than GVHD 

per se. Analysis of liver, small intestine and skin revealed that all humanised NSG mice had 

histological evidence of GVHD (leukocyte infiltration, apoptosis and/or tissue damage). 

Although the leukocyte infiltrates in these tissues were not assessed, previous studies have 

confirmed infiltrates comprise hCD45+ leukocytes (King et al., 2009) predominantly hCD3+ 

T cells (Vlad et al., 2009, Ehx et al., 2017). Of note, histological evidence of GVHD was 

more apparent in humanised mice with clinical GVHD compared to those with subclinical 

GVHD. The reduced histological GVHD in mice with subclinical GVHD is similar to that 

observed in the livers (Vlad et al., 2009, Abraham et al., 2015, Ehx et al., 2017, Burlion et 

al., 2017) and small intestine (Vlad et al., 2009, Nakauchi et al., 2015) of humanised mice 

following various treatments to prevent GVHD. To this end, the current study provided the 

opportunity to examine differences in humanised mice with subclinical versus clinical 

GVHD, and to determine factors that correspond with clinical GVHD development. 

However, it should be noted that this study, like many others (Vlad et al., 2009, Amarnath et 

al., 2011, Gregoire-Gauthier et al., 2012, Nakauchi et al., 2015), used only female NSG mice. 
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Whilst other studies (Ali et al., 2012, Kanakry et al., 2013b, Betts et al., 2017 2018) have 

demonstrated that GVHD can develop in both humanised female and male mice, a 

comparison of subclinical and clinical disease in humanised male NSG mice remains to be 

undertaken.  

Both humanised NSG mice with subclinical or clinical GVHD were engrafted with similar 

proportions of human leukocytes as shown indirectly by histology of spleens and directly by 

flow cytometry of peripheral blood (week 3) and spleens (at end-point). This suggests that a 

difference in GVHD development between these two groups is unlikely to be due to a dose 

effect. However, the splenic hCD4+:hCD8+ T cell ratios were significantly greater in 

humanised mice with clinical GVHD compared to mice with subclinical GVHD. This finding 

is consistent with observations that disease development in humanised NSG mice is mediated 

by hCD4+ T cells (King et al., 2009). Furthermore, the high CD4+:CD8+ T cell ratios in 

humanised mice with clinical GVHD parallels with studies in humans, in which high 

CD4+:CD8+ T cell ratios indicate greater disease severity (Huttunen et al., 2015, Budde et al., 

2017). These observations contrast other findings in humanised NSG mice, where increased 

hCD4+:hCD8+ T cell ratios correlated with reduced disease severity following IL-21 blockade 

to prevent GVHD (Hippen et al., 2012). However, this treatment reduced the number of 

hCD4+ (and hCD8+) T cells, indicating that the absolute number of hCD4+ T cells may also 

be important for GVHD development.  

Serum hIFN-γ concentrations were significantly increased in humanised NSG mice with 

clinical GVHD compared to those with subclinical GVHD. There was also a trend of 

increased hIFN-γ expression in the spleens and livers of mice with clinical GVHD. Reduced 

serum IFN-γ has been used as a marker to demonstrate a reduction in disease severity in 

allogeneic (Wilhelm et al., 2010) and humanised mouse models (Gregoire-Gauthier et al., 

2012) following treatments to prevent GVHD. However, the current study is the first to 
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demonstrate that increased serum hIFN-γ concentrations in humanised mice are associated 

with clinical GVHD. It would be of value to determine if blockade or knockdown of hIFN-γ 

prevents GVHD in humanised NSG mice to directly establish a role for this cytokine in this 

disease model. 

The current study further demonstrated the presence of hFoxP3+ Tregs in the spleens, livers 

and small intestines of humanised NSG mice. This data parallels earlier studies that 

demonstrated the presence of Treg cells in blood, spleens and livers of humanised NSG mice 

(Abraham et al., 2012). Collectively, these studies demonstrate that hFoxP3+ Tregs can traffic 

to target organs in this humanised mouse model of GVHD. This is important, as Treg cells 

need to migrate to target organs to interact with effector T cells to promote anti-inflammatory 

effects and reduce GVHD severity (Nguyen et al., 2007). In the current study there was a 

trend of increased FoxP3+ Tregs in the small intestines of mice with clinical GVHD 

compared to subclinical GVHD. Although this result is contrary to expectations, it may 

reflect a compensatory attempt to suppress the effector T cells mediating intestinal damage in 

mice with clinical GVHD. Alternatively, the increased intestinal FoxP3 expression may 

represent FoxP3lo expressing T cells, which can differentiate to Th17 cells (Miyara et al., 

2009), consistent with the hIL-17 expression in the small intestines of mice with clinical 

GVHD compared to mice with subclinical GVHD. This increased intestinal IL-17 expression 

is consistent with the role of IL-17 in GVHD development (Carlson et al., 2009). Moreover, 

depletion of donor Th17 cells can delay GVHD (Kappel et al., 2009). However, the role of 

IL-17 in GVHD is complicated, with IL-17 also showing a protective role in intestinal 

GVHD (Varelias et al., 2017). Thus, the increased IL-17 expression in the small intestines of 

mice with clinical GVHD may reflect increased pathology or a compensatory mechanism to 

protect against intestinal GVHD in these mice. 
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In conclusion, the current study identified increases in splenic hCD4+:hCD8+ T cell ratios, 

serum hIFN-γ concentrations and intestinal hIL-17 in humanised mice with clinical GVHD 

compared to mice with subclinical GVHD, consistent with observations in human HSCT 

recipients with GVHD. These cellular and molecular changes could therefore be used as 

potential biomarkers in this preclinical model. Furthermore, this data provides insight into 

GVHD development in this preclinical model, which may aid investigation of potential 

therapeutics due to the ability to target human cells and investigate human immune responses 

in these humanised mice. 
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3.2. Abstract 
Graft-versus-host disease (GVHD) remains a major problem after allogeneic haematopoietic 

stem cell transplantation, a curative therapy for haematological malignancies. Previous 

studies have demonstrated a role for the adenosine triphosphate (ATP)-gated P2X7 receptor 

channel in allogeneic mouse models of GVHD. In this study, injection of human peripheral 

blood mononuclear cells (PBMCs) into immunodeficient NOD-SCID-IL2Rγnull (NSG) mice 

established a humanised mouse model of GVHD. This model was used to study the effect of 

P2X7 blockade in this disease. From five weeks post-PBMC injection, humanised mice 

exhibited clinical signs and histopathology characteristic of GVHD. The P2X7 antagonist, 

Brilliant Blue G (BBG), blocked ATP-induced cation uptake into both murine and human 

cells in vitro. Injection of BBG (50 mg/kg) into NSG mice did not affect engraftment of 

human leukocytes (predominantly T cells), or the clinical score and survival of mice. In 

contrast, BBG injection significantly reduced circulating human interferon (IFN)-γ, which 

was produced by human CD4+ and CD8+ T cells. BBG also reduced human T cell infiltration 

and apoptosis in target organs of GVHD. In conclusion, the P2X7 antagonist BBG reduced 

circulating IFN-γ in a humanised mouse model of GVHD supporting a potential role for 

P2X7 to alter the pathology of this disease in humans. 

 

  



www.manaraa.com

86 
 

3.3. Introduction 
Allogeneic haematopoietic stem cell transplantation (HSCT) is a current curative therapy for 

a range of haematological malignancies, including leukaemia and lymphoma (Markey et al., 

2014). A common complication following transplantation is the development of graft-versus-

host disease (GVHD), which arises in approximately half of HSCT recipients worldwide 

(Jagasia et al., 2012). GVHD is mediated by transplanted donor immune cells attacking 

“foreign” host tissue, resulting in inflammatory damage to healthy host tissue. The initial host 

tissue damage by pre-conditioning regimes used to treat cancer causes a pro-inflammatory 

environment, which in turn leads to activation of donor CD4+ T cells through host antigen 

presenting cells (Ferrara et al., 2009). CD4+ T cells then release additional pro-inflammatory 

cytokines including interferon (IFN)-γ and interleukin (IL)-17, directly causing damage to 

tissue, as well as activating cytotoxic CD8+ T cells which further exacerbate disease (Yi et 

al., 2009, Gartlan et al., 2015). Current therapies aim to prevent GVHD by preventing these 

T cell responses through general immunosuppression, leaving a patient vulnerable to 

subsequent infection or relapse, demonstrating a vital need for novel therapeutics (Holtan et 

al., 2014).  

The purinergic system comprises a complex network of extracellular signalling molecules 

and plasma membrane receptors, and is involved in a range of physiological processes 

including inflammation and immunity (Cekic and Linden, 2016). Adenosine triphosphate 

(ATP) is a common signalling molecule in this system, acting as both an autocrine activation 

molecule, and a danger associated molecular pattern when released by damaged or dying 

cells (Junger, 2011). In these contexts, extracellular ATP predominantly mediates its effects 

through activation of the P2X7 receptor (Junger, 2011). P2X7 is an ATP-gated cation 

channel, whereby activation by ATP allows the flux of Ca2+, K+ and other cations including 

fluorescent dyes (De Marchi et al., 2016). P2X7 is present on numerous immune cell types 
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including antigen presenting cells and T cells (Geraghty et al., 2016). Activation of the P2X7 

receptor can result in a variety of downstream signalling events including cytokine release, 

reactive oxygen species formation and cell proliferation (Wiley et al., 2011).  

Extracellular ATP and P2X7 have emerging roles in GVHD. In allogeneic mouse models, 

extracellular ATP accumulates at sites of inflammatory damage, whilst P2X7 is upregulated 

on dendritic cells (DCs) in lymphoid tissues and livers of mice with severe GVHD (Wilhelm 

et al., 2010). Notably, pharmacological blockade or genetic deletion of P2X7 reduces disease 

severity and improves survival in allogeneic mouse models of GVHD (Wilhelm et al., 2010, 

Fowler et al., 2014, Zhong et al., 2016). Studies investigating the role of P2X7 in human 

GVHD are limited, but it has been shown that P2X7 expression is higher in colon biopsies 

from HSCT patients (Wilhelm et al., 2010). Additionally, the presence of a loss-of-function 

P2RX7 single nucleotide polymorphism (E496A) in either the donor or recipient cells 

correlates to reduced survival after allogeneic HSCT (Lee et al., 2007).  

Therefore, the current study aimed to investigate the effect of the P2X7 antagonist, Brilliant 

Blue G (BBG), in a pre-clinical humanised mouse model of GVHD. BBG prevented ATP-

induced dye uptake into splenic DCs from NOD-SCID-IL2Rγnull (NSG) mice and peripheral 

blood T cells from humans. NSG mice engrafted with human (h) peripheral blood 

mononuclear cells (PBMCs) demonstrated increased P2X7 expression in the spleen and small 

intestine. Injection of BBG did not alter the engraftment of human leukocytes or the clinical 

signs of GVHD in these mice. In contrast, injection of BBG caused a significant reduction in 

serum hIFN-γ concentrations, and reduced human T cell infiltration and apoptosis in target 

organs, suggesting a potential role for P2X7 in GVHD pathogenesis in humans.  
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3.4. Methods 

3.4.1. Antibodies for Flow Cytometry 

Fluorescein isothiocyanate (FITC) conjugated mouse anti-hCD4 (clone: RPA-T4), mouse 

anti-hCD8 (clone: RPA-T8) and mouse anti-hCD45 (clone: HI30) monoclonal antibodies 

(mAb); R-phycoerythrin (PE) conjugated mouse anti-hCD3 (clone: UCHT1) and mouse 

anti-hCD8 (clone: RPA-T8) mAb; peridinin chlorophyll protein (PerCP-Cy5.5) conjugated 

mouse anti-hCD4 (clone: L200) and rat anti-mCD45 (clone: 30-F11) mAb; allophycocyanin 

(APCy) conjugated mouse anti-hCD3 (clone: UCHT1) and mouse anti-hCD19 (clone: 

HIB19) mAb were obtained from BD Pharmingen (San Jose, CA, USA). PE-conjugated 

hamster anti-murine (m) CD11c mAb (clone: N418) was from BioLegend (San Diego, CA, 

USA). 

3.4.2. Cells 

Human multiple myeloma RPMI8226 cells were obtained from the European Collection of 

Cell Cultures (Wiltshire, UK). Murine macrophage RAW264.7 cells were obtained from the 

American Type Culture Collection (Manassas, VA, USA). Cells were maintained in RPMI 

1640 medium containing 2 mM GlutaMAX (Thermo Fisher Scientific, Waltham, MA, USA) 

and 10% heat-inactivated foetal bovine serum (FBS) (Bovogen Biologicals; East Keller, 

Australia) at 37°C/5% CO2. Cell lines were checked every two months for Mycoplasma spp. 

infections, using a MycoAlertTM Mycoplasma detection Kit (Lonza; Basel, Switzerland) as 

per the manufacturer’s instructions. Cells were routinely negative for Mycoplasma spp. 

3.4.3. Mice 

Mouse experiments were approved by the Animal Ethics Committee, University of 

Wollongong (Wollongong, Australia). C57BL/6 mice were obtained from Australian 

BioResources (Moss Vale, Australia). P2X7 knock-out (KO) mice (Solle et al., 2001), 

backcrossed onto a C57BL/6 background (Tran et al., 2010) were bred at the University of 
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Wollongong. Deletion of the P2RX7 gene was periodically confirmed as described (Solle et 

al., 2001). Female NSG mice, originally obtained from The Jackson Laboratory (Bar Harbor, 

ME, USA), were bred at the Westmead Animal Research Facility (Westmead, Australia). 

NSG mice were housed in filter top cages in Tecniplast (Buggugiate, Italy) isolation cabinets, 

and provided with autoclaved food and water, ad libitum.  

3.4.4. Isolation of Human PBMCs  

Experiments with human blood were approved by the Human Ethics Committee, University 

of Wollongong. Blood was collected by venepuncture into VACUETTE® lithium heparin 

tubes (Greiner Bio-One; Frickenhausen, Germany). Whole blood was diluted with an equal 

volume of sterile phosphate buffered saline (PBS) (Thermo Fisher Scientific), underlaid with 

Ficoll-Paque PLUS (GE Healthcare; Uppsala, Sweden) and centrifuged (560 x g for 30 min). 

hPBMCs were collected and washed with two volumes of PBS by centrifugation (430 x g for 

5 min) and resuspended in PBS.  

3.4.5. Humanised Mouse Model of GVHD 

NSG mice were injected intra-peritoneally (i.p) with 10 x 106 hPBMCs in 100 μL sterile PBS 

(hPBMC group), or with 100 μL sterile PBS alone (control group) (day 0). At 3 weeks post-

hPBMC injection, mice were checked for engraftment by immunophenotyping of tail vein 

blood. Mice were monitored up to week 8 or 10 for signs of GVHD using a scoring system 

(involving a score out of 2, for each of the following five criteria; weight loss, hunching, 

decreased activity, fur ruffling, and skin involvement) giving a total clinical score out of 10. 

Mice were euthanised at 8 or 10 weeks post-injection of hPBMCs, or earlier if exhibiting a 

clinical score of ≥ 8 or a weight loss of ≥ 10%, according to the approved animal ethics 

protocol. For BBG blockade, mice were injected with 10 x 106 hPBMCs as above, and with 

either 200 μL sterile saline (saline group), or 200 μL sterile saline containing BBG (50 

mg/kg) (BBG group) (Sigma-Aldrich; St Louis, MO, USA) on days 0 (1 h post-hPBMC 



www.manaraa.com

90 
 

injection), 2, 4, 6 and 8. This regime was based on our previous study in which BBG (46 

mg/kg) injected i.p. every 2-3 days was shown to have a therapeutic effect in ALS mice 

(Bartlett et al., 2017), and another study in which i.p. injection of P2X7 antagonists from 

days 0-10 was shown to have a therapeutic effect in an allogeneic mouse model of GVHD 

(Wilhelm et al., 2010). 

3.4.6. Immunophenotyping by Flow Cytometry 

Tail vein blood (50 μL) was collected into 200 μL of citrate solution (Sigma-Aldrich), diluted 

with PBS and centrifuged (500 x g for 5 min). Spleens from euthanised mice were 

homogenised and filtered through 70 μm nylon filters (Falcon Biosciences, New York, NY, 

USA) and centrifuged (300 x g for 5 min). Blood and spleen cells were incubated with 

ammonium chloride potassium lysis buffer (150 mM NH4Cl, 1 mM KHCO3, 0.1 mM 

Na2CO3, pH 7.3) for 5 min and washed in PBS (300 x g for 5 min). Cells were washed in PBS 

containing 2% FBS (300 x g for 3 min), and incubated for 30 min with fluorochrome 

conjugated mAb, including respective isotype controls. Cells were washed with PBS (300 x g 

for 3 min) and data was collected using a BD Biosciences LSRII Flow Cytometer (using band 

pass filters 515/20 for FITC, 575/26 for PE, 675/40 for PerCP-Cy5.5, and 660/20 for APCy). 

The relative percentages of cells were analysed using FlowJo software v8.7.1 (TreeStar Inc.; 

Ashland, OR, USA) (Figure S3.1. and Figure S3.2.).  

3.4.7. Histological Analysis 

Tissues from euthanised mice were incubated overnight in neutral buffered (10%) formalin 

(Sigma-Aldrich). Fixed tissues were removed, coated in paraffin, sectioned (5 μm) and 

stained with haematoxylin and eosin (POCD; Artarmon, Australia). Histological changes 

were assessed using a Leica (Wetzlar, Germany) DMIL inverted light microscope at 4x 

objective and images captured using a Motic (Causeway Bay, Hong Kong) Moticam 2 

microscope camera, and using Motic Images Plus software v2.0.  
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3.4.8. Isolation of RNA 

Tissues removed from euthanised mice were stored in RNAlater (Sigma-Aldrich) at -20°C 

until required. RNA was isolated using TRIzol reagent (Thermo Fisher Scientific) as per the 

manufacturer’s instructions. Isolated RNA was immediately converted to complementary 

DNA (cDNA), using the qScript cDNA Synthesis Kit (Quanta Biosciences, Beverly, MA, 

USA) as per the manufacturer’s instructions, and stored at -80°C. cDNA was checked by 

PCR amplification of the house keeping gene glyceraldehyde 3-phosphate dehydrogenase 

(Invitrogen, Carlsbad, CA, USA) for 35 cycles (95°C for 1 min, 55°C for 1 min, and 72°C for 

1 min) and a holding temperature of 4°C. Purity and size of amplicons were confirmed by 2% 

agarose gel electrophoresis.  

3.4.9. Quantitative Real-Time PCR  

Quantitative real-time PCR (qPCR) reactions were performed using TaqMan Universal 

Master Mix II (Thermo Fisher Scientific) according to the manufacturer’s instructions, with 

primers for FAM-labelled murine glyceraldehyde 3-phosphate dehydrogenase 

(Mm99999915_g1) and mIL-1β (Mm00434228_m1), and VIC-labelled mP2X7 

(Mm01199503_m1), and primers for FAM-labelled human hypoxanthine phosphoribosyl 

transferase 1 (Hs99999909_m1) and hIL-1β (Hs01555410_m1), and VIC-labelled hIFN-γ 

(Hs00989291_m1), hIL-17 (Hs00936345_m1), and hP2X7(B) (AIOIXC2) (Thermo Fisher 

Scientific), as indicated. qPCR cycles consisted of two initial steps of 50°C for 2 min, and 

95°C for 10 min and 40 cycles of 95°C for 15 s, and 60°C for 1 min. qPCR reactions were 

conducted in triplicate, and were performed on a Roche Diagnostics (Indianapolis, IN, USA) 

LightCycler 480, and analysis was conducted using LightCycler480 software v1.5.1. 

3.4.10. Immunoblotting 

Cell lysates were prepared and immunoblotting was performed as described (Bartlett et al., 

2013). Briefly, cell lysates (15 μg protein per lane) were loaded into a Mini-PROTEAN 
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TGXTM Precast Gel (Bio-Rad, Hercules, CA, USA) and electrophoresed. Proteins were 

transferred to a nitrocellulose membrane (Bio-Rad) using a Bio-Rad Trans-Blot Turbo 

Blotting System. Membranes were washed with Tris-buffered saline (250 mM NaCl and 50 

mM Tris, pH 7.5) containing 0.2% Tween-20 (TBST) and blocked overnight at 4°C with 

blocking solution (TBST containing 5% milk powder). Membranes were incubated with 

rabbit anti-mP2X7 (extracellular epitope) antibody (Ab) (1:500) (Alomone Labs; Jerusalem, 

Israel) for 2 h at room temperature (RT), washed with TBST and incubated with peroxidase-

conjugated goat anti-rabbit immunoglobulin G (1:1000) (Rockland Immunochemicals; 

Limerick, PA, USA) for 1 h at RT. Membranes were washed with TBST and incubated with 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific) and images 

collected using an Amersham Imager600 (GE Healthcare).  

3.4.11. ATP-induced YO-PRO-12+ Uptake Assay 

P2X7 pore formation was quantified by measuring ATP-induced YO-PRO-12+ uptake as 

previously described (Spildrejorde et al., 2014). Briefly, cells in NaCl medium (145 mM 

NaCl, 5 mM KCl, 5 mM glucose and 10 mM HEPES, pH 7.4) at 37°C were incubated in the 

absence or presence of BBG for 15 min, and then incubated with 1 μM YO-PRO-1 iodide 

(Molecular Probes, Eugene, OR, USA) in the absence or presence of 1 mM ATP (Sigma-

Aldrich) for 10 min. Incubations were stopped by addition of ice-cold NaCl medium 

containing 20 mM MgCl2 (MgCl2 medium) and centrifugation (300 x g for 3 min). Cells were 

incubated with PE-conjugated anti-mCD11c or APCy-conjugated anti-hCD3 mAb, 

respectively where indicated, for 15 min and washed with NaCl medium. Data was collected 

using an LSRII Flow Cytometer (band-pass filter 515/20 for YO-PRO-12+, 575/25 for PE and 

660/20 for APCy) and FACSDiva software version 8.0. Geometric mean fluorescence 

intensity of YO-PRO-12+ uptake was analysed using FlowJo software (Figure S3.3.). 
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3.4.12. Immunohistochemistry 

Paraffin-embedded formalin fixed tissues were sectioned (5 μm) and mounted on Snowcoat 

slides (Leica) coated with porcine gelatin (Sigma-Aldrich). To identify T cells, tissue sections 

were deparaffinised and heat induced epitope retrieval was performed by incubating in 

sodium citrate buffer (10 mM trisodium citrate dehydrate (Sigma-Aldrich) and 0.05% Tween-

20) for 20 min at 95°C. Before all subsequent steps, tissue sections were washed with Tris-

buffered saline (138 mM NaCl, 2.7 mM KCl and 50 mM Tris, pH 7.5) containing 0.05% 

Tween-20 (TBST2). Tissue sections were blocked with PBS containing 20% goat serum 

(Thermo Fisher Scientific) and 3% bovine serum albumin (BSA) (Amresco, Solon, OH, 

USA) for 30 min at RT, and subsequently incubated with rabbit anti-hCD3 mAb (clone: 

EP449E) (1:50) (Abcam, Cambridge, UK) in TBST2 containing 1% BSA overnight at 4°C. 

Endogenous peroxidase was quenched by incubating with 3% hydrogen peroxide in PBS 

containing 1% BSA for 20 min at RT. Tissue sections were then incubated with horseradish 

peroxidase-conjugated goat anti-rabbit immunoglobulin G (1:250) (Invitrogen) in TBST 

containing 1% BSA for 15 min at RT. Finally, tissue sections were incubated with 3,3 

diaminobenzidine tetrachloride (Sigma-Aldrich) for 5 min at RT, counterstained with 

haematoxylin and dehydrated. To identify apoptotic cells, an In situ Apoptosis Detection Kit 

(Abcam) was used as per the manufacturer’s instructions. Immunohistochemistry images 

were captured using a Leica DMRB microscope and Leica Application Software version 4.3.  

3.4.13. ELISA 

Blood, collected via cardiac puncture from euthanised mice, was incubated for 1 h at RT and 

centrifuged (1,700 x g for 10 min). Supernatants were re-centrifuged (1,700 x g for 10 min) 

and sera stored at -80°C. Serum cytokine concentrations were measured using hIFN-γ, hIL-

17, hIL-4 and mIL-1β Ready-Set-Go! ELISPOT Kits (eBioscience, San Diego, CA, USA) as 
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per the manufacturer’s instructions. Absorbance (450 and 570 nm) was measured using a 

SpectraMax Plus 384 (Molecular Devices, Sunnyvale, CA, USA). 

3.4.14. Intracellular Staining 

Splenocytes, following ammonium chloride potassium buffer lysis, were incubated for 4 h in 

RPMI 1640 medium containing 2 mM L-glutamine (Thermo Fisher Scientific), 10% FBS, 

1% non-essential amino acids (Thermo Fisher Scientific), 55 μM mercaptoethanol (Thermo 

Fisher Scientific), 100 U/mL penicillin/100 μg/mL streptomycin (Thermo Fisher Scientific), 

50 ng/mL phorbol 12-myristate 13-acetate (Sigma-Aldrich), 1 μg/mL ionomycin (Sigma-

Aldrich), and 1 μg/mL GolgiStopTM (BD Biosciences). Cells were centrifuged (300 x g for 5 

min) and washed once with PBS (300 x g for 5 min). Staining was performed using the BD 

Biosciences Intracellular Stain Kit as per the manufacturer’s instructions, mAb added and 

incubated for 30 min at RT. Cells were washed with PBS and data was collected using an 

LSRII Flow Cytometer (band-pass filter 515/20 for FITC, 575/25 for PE, 675/40 for PerCP-

Cy5.5 and 660/20 for APCy) and FACSDiva software version 8.0. The percentage of hIFN-γ+ 

and hIL-17+ cells was analysed using FlowJo software (Figure S3.4.). 

3.4.15. Statistical Analysis 

Data is given as mean ± standard error of the mean (SEM). Statistical differences were 

calculated using Student’s t-test for single comparisons or one-way analysis of variance 

(ANOVA) with Tukey’s post-hoc test for multiple comparisons. Weight and clinical score 

were analysed using a repeated measures two-way ANOVA. Survival was compared using 

the log-rank (Mantel-Cox) test. Correlations between cytokines were assessed using 

Spearman correlation. All statistical analyses and graphs were generated using GraphPad 

Prism 5 for PC (GraphPad Software, La Jolla, CA, USA). P < 0.05 was considered 

significant for all tests.  
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3.5. Results 

3.5.1. NSG Mice Injected with hPBMCs Engraft Predominantly Human 

CD3+ T Cells and Exhibit Clinical Signs of GVHD 

NSG mice injected with hPBMCs develop GVHD from 4 weeks (King et al., 2008). In the 

current study, NSG mice were injected i.p. with 10 x 106 freshly isolated hPBMCs (hPBMC 

group) or saline (control group), and observed for signs of GVHD development for up to 8 

weeks. At 3 weeks post-hPBMC injection, mice were checked for engraftment of human 

cells. hPBMC-injected mice demonstrated engraftment of human leukocytes (14.4 ± 2.7% 

hCD45+ mCD45- cells, n = 9), whilst as expected, no human leukocytes were observed in 

three randomly selected control mice (Figure 3.1.a.). In hPBMC-injected mice the majority of 

hCD45+ cells were T cells (97.5 ± 0.3% hCD3+ hCD19- cells, n = 9) (Figure 3.1.b.). NSG 

mice injected with hPBMCs demonstrated no human B cell (hCD3- hCD19+) engraftment 

(data not shown), and the remaining human leukocytes were negative for both hCD3 and 

hCD19 (2.5 ± 0.3%, n = 9) (Figure 3.1.c.).  

Analysis of spleens from mice euthanised at end point confirmed the absence of human 

leukocytes in control mice (n = 9) (Figure 1d). hPBMC-injected mice engrafted large 

amounts of human leukocytes (86.4 ± 2.0% hCD45+ mCD45- cells, n = 9), whilst as 

expected, no human leukocytes were observed in control mice (n = 9) (Figure 3.1.d.). The 

majority of human leukocytes in the spleen were T cells (98.3 ± 0.2% hCD3+ hCD19- cells, n 

= 9) (Figure 3.1.e.). No human B cells (hCD3- hCD19+) were found in the spleen (data not 

shown), and the remaining cells were negative for both hCD3 and hCD19 (1.7 ± 0.3%, n = 9) 

(Figure 3.1.f.). Analysis of human T cells (hCD3+) revealed that hPBMC-injected mice 

demonstrated a significantly higher percentage of hCD4+ T cells (69.6 ± 6.6%, n = 9) 

compared to hCD8+ T cells (27.6 ± 6.4%, n = 9) (P = 0.0121) (Figure 3.1.g.).  
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As stated above, mice were observed for signs of GVHD for up to 8 weeks. Weight changes 

were similar between hPBMC-injected and control mice from weeks 1-4, with both groups 

demonstrating weight gain. However, hPBMC-injected mice steadily began to lose weight 

from day 30, while saline-injected control mice maintained a weight of over 110% of their 

starting weight throughout the 8 week observation period (P = 0.4154) (Figure 3.1.h.). 

Saline-injected control mice did not show any signs of GVHD, and maintained a clinical 

score of 0 over the observation period (n = 9). In contrast, hPBMC-injected mice displayed 

clinical signs of GVHD from day 30, first evident as fur ruffling, followed by hunching, 

reduced activity, weight loss, and/or areas of scaly skin patches. hPBMC-injected mice had a 

mean clinical score of 4.3 ± 1.1 at end point. The clinical scores between the two groups were 

significantly different over 8 weeks (n = 9) (P = 0.0038) (Figure 3.1.i.). hPBMC-injected 

mice succumbed to disease from day 40, with a median survival time (MST) of 54 days, and 

exhibited a 55% mortality rate by end point, compared to 100% survival of control mice (P = 

0.0101) (Figure 3.1.j.).  

3.5.2. NSG Mice Injected with hPBMCs Show Histological Evidence of GVHD 

and Increased Murine P2X7 Expression 

Histological analysis of the target organs; liver, small intestine and skin, revealed that mice 

injected with hPBMCs displayed greater leukocyte infiltration and tissue damage compared 

to tissues from control mice (Figure 3.2.a.). Compared to control mice, hPBMC-injected mice 

demonstrated mildly increased leukocyte infiltration, loss of structural integrity and apoptosis 

of cells in the liver (Figure 3.2.a.), mild damage in the small intestine with increased 

apoptotic cells and rounded villi (Figure 3.2.a.), and lastly mild leukocyte infiltration and 

epidermal thickening in the skin compared to control mice (Figure 3.2.a.).  
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mice. (a-g) NSG mice were injected intra-peritoneally (i.p.) with either 10 x 106 human (h) peripheral 
blood mononuclear cells (PBMCs) (n = 9) or an equal volume of saline (control) (n = 9), and 
monitored for clinical signs of graft-versus-host disease (GVHD) over 8 weeks. (a-g) The percentage 
of human leukocytes in (a-c) blood at 3 weeks post-hPBMC injection and (d-f) spleens at end point 
were determined by flow cytometry. (a, d) hCD45+ leukocytes are expressed as a percentage of total 
mCD45+ and hCD45+ leukocytes. (b, e) hCD3+ hCD19- cells and (c, f) hCD3- hCD19- cells are 
expressed as a percentage of total hCD45+ leukocytes. (g) hCD4+ and hCD8+ T cell subsets are 
expressed as a percentage of total hCD3+ leukocytes. Data represents group means ± SEM; symbols 
represent individual mice; * P < 0.05 compared to hCD8+ T cells. (h-j) NSG mice were monitored for 
(h) weight loss, (i) clinical score and (j) survival. Data represents (h, i) group means ± SEM, or (j) 
percent survival (control, n = 9, hPBMC n = 9); * P < 0.05 and ** P < 0.005 compared to control 
mice. 

 

Figure 3.1. Engraftment of human leukocytes and development of GVHD in NOD-SCID-IL2Rγnull (NSG) 
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P2X7 expression is up-regulated in host tissues in allogeneic mouse models of GVHD 

(Wilhelm et al., 2010, Zhong et al., 2016). Therefore, mP2X7 expression in the spleen, liver 

and small intestine was analysed by qPCR. mP2X7 expression was increased two-fold in the 

spleens from hPBMC-injected mice (2.6 ± 0.6, n = 7) compared to spleens from control mice 

(1.2 ± 0.6, n = 4), but this difference did not reach statistical significance (P = 0.1656) 

(Figure 3.2.b.). Hepatic mP2X7 expression was similar in hPBMC-injected (5.5 ± 0.6, n = 6) 

and control mice (6.9 ± 1.4, n = 3) (P = 0.4160) (Figure 3.2.c.). mP2X7 expression was 

approximately two-fold greater in the small intestines from hPBMC-injected mice (16.9 ± 

2.7, n = 6) compared to control mice (9.9 ± 6.2, n = 4), but this did not reach statistical 

significance (P = 0.2668) (Figure 3.2.d.). 

3.5.3. NSG Mice Express Full-Length Functional P2X7 Receptors 

The data above (Figure 3.2. b-d) demonstrates that NSG mice express P2X7, but it remained 

unknown if NSG mice express functional P2X7. Immunoblotting using an antibody against 

the extracellular domain of P2X7 demonstrated a major band at 81 kDa, corresponding to 

full-length P2X7 (Masin et al., 2012) in the positive control RAW264.7 macrophages and in 

NSG splenocytes (n = 2) (Figure 3.3.a.). 

To determine if NSG mice express functional P2X7, RAW264.7 cells or splenic leukocytes 

from mice were incubated in the absence or presence of ATP, and YO-PRO-12+ uptake 

assessed by flow cytometry. ATP induced YO-PRO-12+ uptake into positive control 

RAW264.7 cells (n = 4) and CD11c+ splenic DCs from C57BL/6 mice (n = 4), but not 

negative control CD11c+ splenic DCs from P2X7 KO mice (n = 3) (Figure 3.3.b.). Notably, 

ATP also induced YO-PRO-12+ uptake into CD11c+ splenic DCs from NSG mice (n = 5) 

(Figure 3.3b). This uptake was 50% lower than that of RAW264.7 macrophages (P < 0.005), 

but three-fold greater than that of C57BL/6 CD11c+ splenic DCs (P < 0.005) (Figure 3.3.b.).  
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versus-host disease (GVHD). (a-d) NSG mice injected intra-peritoneally (i.p.) with either human (h) 
peripheral blood mononuclear cells (hPBMCs) or saline (control) (day 0) (from Figure 1) were 
monitored for clinical signs of graft-versus-host disease (GVHD) over 8 weeks. (a) Tissue sections 
(liver, small intestine and skin) from control (top panel) or hPBMC-injected mice (bottom panel) at 
end point were stained with haematoxylin and eosin and captured by microscopy. Each image is 
representative of two mice per group; bar represents 100 μm. (b-d) The relative expression of murine 
(m) P2X7 in (b) spleen, (c) liver and (d) small intestine from mice at end point was examined by 
qPCR. Data represents group means ± SEM (n = 4-7); symbols represent individual mice. 

 

 

Figure 3.2. NOD-SCID-IL2Rγnull (NSG) mice injected with human leukocytes develop graft- 
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 (a) Lysates of 
RAW264.7 (RAW) macrophages and splenocytes from NSG mice were examined by immunoblotting 
using an anti-P2X7 antibody. Image is representative of two independent experiments. (b) RAW264.7 
cells or splenocytes from C57BL/6, P2X7 KO or NSG mice in NaCl medium containing 1 μM YO-
PRO-12+ were incubated in the absence or presence of 1 mM adenosine triphosphate (ATP) for 10 min 
at 37°C. The mean fluorescence intensity of YO-PRO-12+ uptake into RAW264.7 cells or CD11c+ 
splenic dendritic cells (DCs) was then assessed by flow cytometry. ATP-induced YO-PRO-12+ uptake 
was determined as the difference between YO-PRO-12+ uptake in the presence and absence of ATP. 
Data represents group means ± SEM (n = 3 - 5); symbols represent individual replicates (RAW264.7 
cells) or mice (splenic CD11c+ DCs); ** P < 0.005 and *** P < 0.0001 compared to C57BL/6. 

 

3.5.4. BBG Prevents ATP-Induced Cation Uptake into Human and Murine 

Leukocytes 

Since its initial use in rodent models of multiple sclerosis (Matute et al., 2007), spinal cord 

injury (Peng et al., 2009) and Huntington’s disease (Díaz-Hernández et al., 2009), BBG has 

been used in over 40 studies to establish the role of P2X7 in various disorders (Bartlett et al., 

2014) including our group in a murine model of amyotrophic lateral sclerosis (Bartlett et al., 

2017). To confirm that BBG can block hP2X7 and mP2X7, human RPMI8226 and murine 

RAW264.7 cells, both of which express endogenous P2X7 (Farrell et al., 2010, 

Constantinescu et al., 2010), were pre-incubated with increasing concentrations of BBG and 

then ATP-induced YO-PRO-12+ uptake was assessed. BBG exhibited a concentration-

dependent inhibition of ATP-induced YO-PRO-12+ uptake, with maximal inhibition at 1 μM 

Figure 3.3 NOD-SCID-IL2Rγnull (NSG) mice express full-length functional P2X7. 
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in both cell types, and half maximal inhibitory concentrations (IC50) of 99.0 ± 1.2 nM and 

59.7 ± 1.2 nM in RPMI8226 cells and RAW264.7 cells, respectively (Figure 3.4.a.). These 

IC50 values are similar to that known for recombinant hP2X7 and mP2X7 (Bartlett et al., 

2014).  

To confirm that BBG can block P2X7 in primary leukocytes, hPBMCs and NSG splenocytes 

were pre-incubated in the absence or presence of BBG, and then ATP-induced YO-PRO-12+ 

uptake was assessed. ATP induced significant YO-PRO-12+ uptake into hCD3+ T cells, which 

was reduced by 95% by pre-incubation with BBG (P < 0.0001, n = 3) (Figure 3.4.b.). ATP 

induced significant YO-PRO-12+ uptake into NSG CD11c+ splenic DCs, which was reduced 

92% by pre-incubation with BBG (Figure 3.4.c.) (P < 0.0001, n = 3). Basal uptake of YO-

PRO-12+ in the absence or presence of BBG was similar for each respective cell subtype 

(Figure 3.4.b, c.). 

 

uptake into human and murine leukocytes. (a) Human RPMI8226 and murine RAW264.7 cells, (b) 
human peripheral blood mononuclear cells (PBMCs) or (c) NOD-SCID-IL2Rγnull (NSG) splenocytes 
in NaCl medium were pre-incubated for 15 min at 37°C in the absence or presence of (a) BBG as 
indicated or (b, c) 1 μM BBG. Cells were then incubated with 1 μM YO-PRO-12+ in the absence or 
presence of 1 mM adenosine triphosphate (ATP) for 10 min at 37°C. The mean fluorescence intensity 
of YO-PRO-12+ uptake into (a) RPMI8226 or RAW264.7 cells, (b) hCD3+ T cells or (b) NSG splenic 
CD11c+ dendritic cells (DCs) was then assessed by flow cytometry. (a) ATP-induced YO-PRO-12+ 
uptake is represented as a percentage of maximal ATP response in the absence of BBG. (a-c) Data 
represents group means ± SEM (n = 3); *** P < 0.0001 compared to respective basal.  

Figure 3.4. Brilliant Blue G (BBG) prevents adenosine triphosphate (ATP)-induced cation  
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3.5.5. BBG Does Not Affect Engraftment of Human Cells or Prevent GVHD in 

NSG Mice       

To investigate whether P2X7 blockade can prevent disease in a humanised mouse model of 

GVHD, NSG mice were injected with hPBMCs and the P2X7 antagonist BBG (50 mg/kg) 

was subsequently injected every two days from days 0 to 8. Mice were monitored for weight 

loss and signs of GVHD for up to 10 weeks. To determine if BBG affected engraftment of 

human cells, blood was collected at 3 weeks post-hPBMC injection and cells analysed by 

flow cytometry. BBG-injected mice demonstrated a similar level of human leukocytes (10.4 

± 1.3% hCD45+ mCD45- cells, n = 14) compared to saline-injected (vehicle control) mice 

(10.6 ± 1.4% hCD45+ mCD45- cells, n = 16) (P = 0.9179) (Figure 3.5.a.). In both groups of 

mice, the majority of hCD45+ cells were T cells, which did not differ between BBG-injected 

mice (97.2 ± 0.4% hCD3+ hCD19- cells, n = 14) and saline-injected mice (97.4 ± 0.4% 

hCD3+ hCD19- cells, n = 16) (P = 0.7014) (Figure 3.5.b.). Neither group of mice 

demonstrated engraftment of B cells (hCD3- hCD19+) (data not shown). The remaining 

hCD45+ cells were negative for both hCD3 and hCD19, and the percentage of these cells did 

not differ between BBG-injected mice (2.7 ± 0.4%, n = 14) and saline-injected mice (2.5 ± 

0.4%, n = 16) (P = 0.8291) (Figure 3.5.c.).  

Analysis of spleens from all mice euthanised at end point demonstrated human leukocytes 

comprised the majority of total murine and human leukocytes. BBG-injected mice engrafted 

a similar level of human leukocytes (56.3 ± 5.0% hCD45+ mCD45- cells, n = 13) compared 

to saline-injected mice (56.2 ± 6.2% hCD45+ mCD45- cells, n = 15) (P = 0.9899) (Figure 

3.5.d.). The majority of human leukocytes in the spleen were T cells, and both BBG-injected 

mice (97.1 ± 0.6% hCD3+ hCD19- cells, n = 13) and saline-injected mice (95.4 ± 0.6% 

hCD3+ hCD19- cells, n = 15) demonstrated similar percentages of T cells (P = 0.2481) 

(Figure 3.5.e.). No human B cells (hCD3- hCD19+) were found in the spleens (data not 
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shown). The remaining hCD45+ cells were negative for both hCD3 and hCD19, and 

percentages of these cells did not differ between BBG-injected mice (2.7 ± 0.6%, n = 15) and 

saline-injected mice (2.7 ± 0.6%, n = 15) (P = 0.5325) (Figure 3.5.f.). Analysis of the human 

T cells (hCD3+) revealed that BBG- and saline-injected mice contained similar percentages of 

hCD4+ T cells (67.0 ± 4.1%, n = 13 vs. 72.7 ± 4.3%, n = 15, respectively, P = 0.3515). BBG- 

and saline-injected mice also contained similar percentages of hCD8+ T cells (24.0 ± 3.6%, n 

= 13 vs 22.3 ± 4.1%, n = 15, respectively, P = 0.7583). In both BBG- and saline-injected 

mice, the percentage of hCD4+ T cells was significantly higher than hCD8+ T cells (P < 

0.0001) (Figure 3.5.g.).  

As stated above, mice were observed for signs of GVHD for up to 10 weeks. Both BBG- and 

saline-injected humanised mice began to lose weight from day 30 (P = 0.8450) (Figure 

3.5.h.). Both BBG- and saline-injected mice began to exhibit signs of mild GVHD at day 35, 

and both BBG- and saline-injected mice, exhibited similar clinical scores at end point (5.3 ± 

0.5, n = 16 vs. 4.9 ± 0.6, n = 14, respectively). The clinical scores between the two groups 

were not significantly different over 8 weeks (P = 0.8356) (Figure 3.5.i.). Survival was also 

similar in both BBG-injected mice (MST of 64 days, and mortality rate of 57%, n = 16) and 

saline-injected mice (MST of 60 days and mortality rate of 62%, n = 14), (P = 0.9874 for 

mortality rate) (Figure 3.5.j.).  
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 (a-j) NOD-SCID-
IL2Rγnull (NSG) mice were injected intra-peritoneally (i.p.) with 10 x 106 human (h) peripheral blood 
mononuclear cells (PBMCs), and subsequently with saline (control) (n = 14) or saline containing 
Brilliant Blue G (BBG) (50 mg/kg) (n = 16) every two days (from days 0-8), and monitored for 
clinical signs of graft-versus-host disease (GVHD) over 10 weeks. (a-g) The percentage of human 
leukocytes in (a-c) blood at 3 weeks post-hPBMC injection and (d-f) spleens at end point were 
determined by flow cytometry. (a, d) hCD45+ leukocytes are expressed as a percentage of total 
mCD45+ and hCD45+ leukocytes. (b, e) hCD3+ hCD19- cells and (c, f) hCD3- hCD19- cells are 
expressed as a percentage of total hCD45+ leukocytes. (g) hCD4+ and hCD8+ T cell subsets are 
expressed as a percentage of total hCD3+ leukocytes. Data represents group means ± SEM; symbols 
represent individual mice; *** P < 0.0001 compared to hCD8+ T cells. (h-j) NSG mice were 
monitored for (a) weight loss, (b) clinical score, and (c) survival. Data represents (h, i) group means ± 
SEM or (j) percent survival (saline n = 14, BBG n = 16). 

 

Figure 3.5 Brilliant Blue G (BBG) does not affect engraftment of human cells.  
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3.5.6. BBG Reduces Histological Evidence of GVHD in Humanised Mice 

BBG- and saline-injected humanised mice demonstrated similar damage to the liver with 

some leukocyte infiltration, apoptosis of cells and fibrosis (Figure 3.6.a.). Both BBG- and 

saline-injected humanised mice demonstrated structural damage to the small intestine; 

however, BBG-injected humanised mice exhibited decreased leukocyte infiltration compared 

to saline-injected humanised mice (Figure 3.6.a.). BBG-injected humanised mice also 

exhibited mildly decreased leukocyte infiltrates in the dermis, decreased apoptotic cells and 

reduced basal vacuolar change of the skin compared to that of saline-injected humanised 

mice (Figure 3.6.a.). 

Immunohistochemistry of the target organs, liver, small intestine and skin, was used to 

determine if the leukocyte infiltrates observed above included human T cells. T cells 

(indicated by black arrows) were identified in the liver, and to a lesser extent in the small 

intestine and skin (Figure 3.6.b.). T cell infiltration in the liver, small intestine and skin 

appeared to be reduced in BBG-injected mice compared to saline-injected mice (Figure 

3.6.b.). To confirm tissue damage in the liver, small intestine and skin, these target organs 

were analysed for evidence of apoptosis (fragmented DNA) by immunohistochemistry. 

Apoptotic cells (indicated by red arrows) were evident in the liver and small intestine, and to 

a lesser extent in the skin (Figure 3.6.c.). Apoptosis in these organs appeared to be reduced in 

BBG-injected mice compared to saline-injected mice (Figure 3.6.c.). 

humanised mice. (a-c) NOD-SCID-IL2Rγnull (NSG) mice injected intra-peritoneally (i.p.) with 10 x 
106 human (h) peripheral blood mononuclear cells (PBMCs) (day 0), and with saline (control) or 50 
mg/kg Brilliant Blue G (BBG) (from Figure 5) were monitored for clinical signs of GVHD over 10 
weeks. Tissue sections (liver, small intestine, and skin) from hPBMC-injected mice injected with 
saline (control) or BBG at end point were stained with (a) haematoxylin and eosin, (b) anti-hCD3 
monoclonal antibody with 3,3’-diaminobenzidine tetrachloride detection system and haematoxylin, or 
(c) terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labelling with 3,3’-
diaminobenzidine tetrachloride detection system and methyl green. Images were captured by 
microscopy with each image representative of (a) four, or (b, c) two mice per group; bars represent 
100 μm; (b) black arrow heads indicate T cells, and (c) red arrow heads indicate apoptotic cells. ►  

Figure 3.6. Brilliant Blue G (BBG) does not prevent graft-versus-host disease (GVHD) in  
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3.5.7. BBG-Injected Mice Demonstrate Similar mP2X7 and hP2X7 Expression 

in GVHD Target Organs 

To determine whether injection of BBG altered expression of murine (host) or human (donor) 

P2X7 expression in the spleens and target organs of GVHD, tissues from humanised mice 

were analysed by qPCR. mP2X7 expression was similar in spleens of BBG-injected mice 

(4.6 ± 1.0, n = 6) and saline-injected mice (5.7 ± 0.5, n = 6) (P = 0.5446) (Figure 3.7.a.). 

mP2X7 expression in the liver was reduced by 58% in BBG-injected mice (1.6 ± 0.3, n = 4) 

compared to saline-injected mice (3.9 ± 1.2, n = 5), however this difference did not reach 

statistical significance (P = 0.1619) (Figure 3.7.b.). Conversely, mP2X7 expression was 

increased almost two-fold in the small intestines of BBG-injected mice (2.8 ± 0.7, n = 6) 

compared to saline-injected mice (1.6 ± 0.3, n = 5), but this did not reach statistical 

significance (P = 0.1763) (Figure 3.7.c.). hP2X7 expression was decreased by 74% in the 

spleens of BBG-injected mice (3.0 ± 0.9, n = 5) compared to saline-injected mice (11.4 ± 3.5, 

n = 6) and this difference approached statistical significance (P = 0.0595) (Figure 3.7.d.). In 

contrast, hP2X7 expression was similar in the livers and small intestines of BBG-injected 

mice (6.3 ± 2.6, n = 5, and 7.6 ± 2.9, n = 5, respectively) compared to saline-injected mice 

(3.7 ± 1.1, n = 4, and 5.7 ± 1.8, n = 6, respectively) (P = 0.4296 and 0.5642, respectively) 

(Figure 3.7.e., f.). 

3.5.8. BBG Reduces Serum Human IFN-γ in Humanised Mice 

IFN-γ and IL-17 are important pro-inflammatory cytokines implicated in the pathogenesis of 

GVHD (Yi et al., 2009, Gartlan et al., 2015). To determine if BBG treatment altered the 

amount of these cytokines, serum hIFN-γ and hIL-17 concentrations in humanised mice were 

assessed by ELISA. hIFN-γ was present in the serum of all mice for which samples were 

available (Figure 3.8.a.). Notably, treatment with BBG significantly reduced the amount of 

serum hIFN-γ in BBG-injected mice (10.0 ± 2.4 ng/mL, n = 12), which was 54% lower than 
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humanised mice. (a-f) NOD-SCID-IL2Rγnull (NSG) mice injected intra-peritoneally (i.p.) with 10 x 
106 human peripheral blood mononuclear cells (day 0), and with saline (control) or 50 mg/kg Brilliant 
Blue G (BBG) (from Figure 5) were monitored for clinical signs of GVHD over 10 weeks. The 
relative expression of (a-c) murine (m) P2X7 and (d-f) hP2X7 in (a, d) spleen, (b, e) liver, and (c, f) 
small intestine from mice at end point were examined by qPCR. Data represents group means ± SEM 
(n = 4-6); symbols represent individual mice.  

 

that of saline-injected mice (21.8 ± 2.4 ng/mL, n = 13) (P = 0.0023) (Figure 3.8.a.). In 

contrast, hIL-17 was only detected in the serum from four BBG-injected mice (33%) and two 

saline-injected mice (15%) for which samples were available (Figure 3.8.b.). The amount of 

hIL-17 in the serum of BBG-injected mice (40.8 ± 21.1 pg/mL, n = 4) was almost ten-fold 

Figure 3.7. Brilliant Blue G (BBG) does not impact expression of mP2X7 or hP2X7 in tissues in  
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greater than that of saline-injected mice (4.4 ± 4.0 pg/mL, n = 2), however this difference did 

not reach statistical significance (P = 0.1031) (Figure 3.8.b.).  

To determine the potential source of hIFN-γ and hIL-17, splenocytes were isolated from 

humanised mice and the intracellular expression of hIFN-γ and hIL-17 was analysed by flow 

cytometry. Both hCD4+ and hCD8+ T cells produced hIFN-γ and to a lesser extent hIL-17 

(Figure 3.8.c, d). The percentage of hIFN-γ-producing hCD8+ T cells was four-fold greater 

than hIFN-γ-producing hCD4+ T cells from BBG-injected mice (32.6 ± 7.1% vs 8.1 ± 2.1%, 

respectively, n = 4) and saline-injected mice (39.0 ± 18.9% vs 10.2 ± 7.3%, respectively, n = 

3), but this only reached statistical significance in the BBG-injected group (P = 0.0165) 

(Figure 3.8.c.). The percentage of hIL-17-producing hCD4+ and hCD8+ T cells in BBG-

injected mice (3 ± 4% vs. 2 ± 1%, n = 4, respectively) was similar to saline-injected mice (2 ± 

1% vs. 2 ± 1%, n = 3, respectively) (P = 0.5046 and 0.8437, respectively) (Figure 3.8.d.).  

To determine if expression of IFN-γ and IL-17 were altered in the spleens, and target organs 

of GVHD, tissues from humanised mice were analysed by qPCR. hIFN-γ expression was 1.5-

fold greater in the spleens of BBG-injected mice (9.4 ± 3.9, n = 6) compared to saline-

injected mice (6.4 ± 1.2, n = 6), but this difference did not reach statistical significance (P = 

0.4825) (Figure 3.8.e.). hIFN-γ expression was similar in livers of BBG-injected mice (1.4 ± 

0.1, n = 6) and saline-injected mice (1.6 ± 0.3, n = 6) (P = 0.6549) (Figure 3.8.f.). hIFN-γ 

expression was two-fold greater in the small intestines of BBG-injected mice (2.5 ± 1.1, n = 

3) compared to saline-injected mice (1.2 ± 0.1, n = 4) but again this difference did not reach 

statistical significance (P = 0.2050) (Figure 3.8.g.). hIL-17 expression in spleens of BBG-

injected mice (9.6 ± 6.3, n = 5) was similar to saline-injected mice (13.9 ± 4.0, n = 6) (P = 

0.5441) (Figure 3.8.h.). hIL-17 was not detected in the livers of either BBG-injected mice (n 

= 2) or saline-injected mice (n = 4) (Figure 3.8.i.). hIL-17 expression was two-fold greater in 

the small intestines of BBG-injected mice (6.3 ± 2.2, n = 5) compared to saline-injected mice 
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(2.6 ± 1.3, n = 4), but this difference did not reach statistical significance (P = 0.2263) 

(Figure 3.8.j.). 

3.5.9. BBG Does Not Alter Murine or Human IL-1β Expression in Humanised 

Mice 

Activation of P2X7 causes IL-1β maturation and release from antigen presenting cells 

(Englezou et al., 2015), a pro-inflammatory cytokine implicated in the pathogenesis of 

GVHD (McCarthy Jr et al., 1991). Moreover, P2X7-mediated IL-1β release is involved in the 

production of IFN-γ (Ghiringhelli et al., 2009) and IL-17 (Zhao et al., 2013). Given the 

identity of the antigen presenting cells involved in human T cell activation in our humanised 

model of GVHD remains unknown and since mIL-1β can stimulate human cells (Huang et 

al., 1988, Vandenabeele et al., 1990), the expression of both mIL-1β and hIL-1β in the 

spleen, liver and small intestine from these mice was analysed by qPCR. mIL-1β expression 

was 3-fold greater in the spleens of BBG-injected mice (6.3 ± 2.8, n = 3) compared to saline-

injected mice (2.0 ± 0.9, n = 5), but this difference did not reach statistical significance (P = 

0.1183) (Figure 3.9.a.). mIL-1β expression was similar in the livers and small intestines of 

BBG- injected (2.7 ± 1.2, n = 5 and 2.5 ± 0.5, n = 6, respectively) and saline-injected mice 

(2.7 ± 0.7, n = 4 and 1.9 ± 0.6, n = 6, respectively) (P = 0.9552 and 0.4829, respectively) 

(Figure 3.9.b, c). In contrast to mIL-1β, hIL-1β expression was approximately 50% lower in 

the spleens of BBG-injected mice (2.2 ± 1.1, n = 5) compared to saline-injected mice (5.0 ± 

2.1, n = 5), but this difference did not reach statistical significance (P = 0.2986) (Figure 

3.9.d.). hIL-1β expression was not detected in livers or small intestines from either BBG- or 

saline-injected mice (both n = 5) (data not shown). Therefore, given the broad expression of 

mIL-1β within the humanised mice, serum mIL-1β was assessed by ELISA. However, mIL-

1β was not detected in the serum from BBG-injected (0.0 ± 0.0, n = 12) or saline-injected 

mice (0.0 ± 0.0, n = 11) using an ELISA with a reported sensitivity of 8 pg/mL (eBioscience). 
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humanised mice. (a-j) NOD-SCID-IL2Rγnull (NSG) mice were injected intra-peritoneally (i.p.) with 
10 x 106 human (h) peripheral blood mononuclear cells (PBMCs) (day 0), and with saline (control) or 
50 mg/kg Brilliant Blue G (BBG) (from Figure 5). Concentrations of serum (a) hIFN-γ, and (b) hIL-
17 were analysed by ELISA. Data represents group means ± SEM (saline n = 12, BBG n = 13); **P < 
0.005 compared to saline-injected mice. (c, d) Splenocytes were incubated in complete RPMI 1640 
medium containing phorbol 12-myristate 13-acetate and ionomycin for 4 h, and the percentage of 
hCD4+ and hCD8+ T cells producing intracellular (c) hIFN-γ or (d) hIL-17 was determined by flow 
cytometry. Data represents group means ± SEM (saline n = 3, BBG = 4); symbols represent individual 
mice; * P < 0.05 compared to corresponding hCD4+ T cells. (e-j) The relative expression of (e-g) 
hIFN-γ and (h-j) hIL-17 in (e, h) spleen, (f, i) liver and (g, j) small intestine from mice at end point 
were examined by qPCR. Data represents group means ± SEM (n = 2-6); symbols represent 
individual mice. ND = not detected. 

 

 

 

in humanised mice. (a-d) NOD-SCID-IL2Rγnull (NSG) mice were injected intra-peritoneally (i.p.) 
with 10 x 106 human (h) peripheral blood mononuclear cells (PBMCs) (day 0), and with saline 
(control) or 50 mg/kg Brilliant Blue G (BBG) (from Figure 5). The relative expression of (a-c) murine 
(m) interleukin (IL)-1β and (d) hIL-1β in (a, d) spleen, (b) liver and (c) small intestine from mice at 
end point were examined by qPCR. Data represents group means ± SEM (n = 3-6); symbols represent 
individual mice. 

 

3.6. Discussion 
This study aimed to investigate the effect of the P2X7 antagonist, BBG, in a pre-clinical 

humanised mouse model of GVHD. Injection of BBG into humanised mice did not alter 

human leukocyte engraftment or disease progression, as assessed by weight loss, clinical 

score and survival. However, treatment with BBG significantly reduced serum hIFN-γ. 

◄ Figure 3.8. Brilliant Blue G (BBG) significantly reduces serum human interferon (IFN)-γ in  

Figure 3.9. Brilliant Blue G (BBG) does not alter relative expression of human or murine IL-1β  
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Intracellular hIFN-γ was detected in both splenic hCD4+ and hCD8+ T cells of humanised 

mice, with a larger proportion (four-fold) of hIFN-γ+ hCD8+ T cells than hIFN-γ hCD4+ T 

cells. However, splenic hCD4+ T cells were more frequent (three-fold) than hCD8+ T cells in 

humanised mice, and therefore the relative contribution of each subset to circulating IFN-γ 

production needs to be further elucidated. Pharmacological blockade or genetic deficiency of 

P2X7 has also been shown to reduce serum IFN-γ in allogeneic mouse models of GVHD 

(Wilhelm et al., 2010, Fowler et al., 2014). Additionally, P2X7 activation of the NLRP3 

inflammasome and subsequent IL-1β production promotes the generation of IFN-γ+ CD8+ T 

cells in mice (Ghiringhelli et al., 2009). Combined, these findings support a potential role for 

P2X7 in GVHD pathology in humans, possibly through the regulation of T cell activation and 

subsequent IFN-γ production. To this end, IFN-γ plays important roles in the up-regulation of 

CXCR3 and subsequent trafficking of T cells to target tissues in allogeneic mouse models of 

GVHD (Choi et al., 2012a). Conversely, others have suggested that IFN-γ+ CD8+ T cells and 

IFN-γ+ CD4+ T cells are important in the initiation and progression of disease, respectively, 

in an allogeneic mouse model of GVHD (Zhao et al., 2016). Nevertheless, it remains to be 

determined if P2X7 functions through these mechanisms in allogeneic or humanised mouse 

models of GVHD. 

The current study also identified the presence of serum hIL-17 in a small proportion of 

humanised mice (15-30%), and intracellular hIL-17 in an even smaller population of splenic 

hCD4+ and hCD8+ T cells (2-3%) from these mice. Due to the relatively small populations, it 

is not possible to positively determine the role of P2X7 on hIL-17 production in this 

humanised mouse model of GVHD. However, the mean serum hIL-17 concentration was 10-

fold greater in BBG-injected mice compared to saline-injected mice. These results may 

suggest P2X7 blockade promotes hIL-17 production in humanised mice, which contradicts 

previous in vitro results in which P2X7 activation promoted hIL-17 production in T cells 
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(Ghiringhelli et al., 2009). Others have shown that a shift from an IFN-γ-producing to an IL-

17-producing T cell phenotype exacerbates GVHD in an allogeneic mouse model of GVHD 

(Pan et al., 2012). Similarly, increased numbers of IL-17-producing T cells were observed in 

patients with more severe GVHD (Zhao et al., 2011). Investigating IL-17-producing T cells 

at time points prior to end point or through increased sample sizes may assist in addressing 

the role of P2X7 blockade in IL-17 production in humanised mice with GVHD.  

Due to the variation observed in hIL-17 mRNA expression between humanised mice, and the 

role of IL-1β in the differentiation of IL-17-producing T cells (Acosta-Rodriguez et al., 2007) 

including models of P2X7 activation (Zhao et al., 2013), mIL-1β and hIL-1β was also 

examined in the current study. mIL-1β, but not hIL-1β, mRNA expression was detected in the 

livers and small intestines of humanised mice, with no differences observed between BBG- 

and saline-treatments. In contrast both mIL-1β and hIL-1β mRNA expression was detected in 

the spleens of humanised mice, with BBG treatment resulting in a 3-fold increase in mIL-1β 

mRNA expression and a 50% decrease in hIL-1β mRNA expression. However, there was no 

correlation between hIL-17 and hIL-1β, or between hIL-17 and mIL-1β mRNA expression 

(results not shown), although n values are relatively small, limiting interpretation of this data. 

Due to the inability to detect serum mIL-1β in these mice, serum mIL-1β could not be 

compared with serum hIL-17 (hIFN-γ). The inability to detect serum mIL-1β was not limited 

to this cytokine, as serum hIL-4 was not detected in initial experiments to establish the 

humanised mouse model, despite detection of serum hIFN-γ in these mice (results not 

shown). 

As previously mentioned, injection of BBG into humanised mice did not alter disease 

progression, as assessed by weight loss, clinical score and survival. However, histological 

examination revealed that BBG reduced the infiltration of leukocytes into the small intestine 

and skin in this humanised mouse model of GVHD. Moreover, there was also histological 



www.manaraa.com

115 
 

evidence of reduced tissue damage in these tissues from BBG-injected mice compared to 

saline-injected mice, observations supported by immunohistochemical analysis of T cell 

infiltrates and apoptosis. In contrast, BBG did not alter the proportion of hCD4+ or hCD8+ T 

cells in blood and spleens of humanised mice. Others have reported that humanised NSG 

mice exhibit leukocyte infiltration and tissue damage in the liver, small intestine and skin, 

characteristic of GVHD (King et al., 2009). T cells are the main mediators of disease in this 

humanised mouse model of GVHD (Covassin et al., 2013, Abraham et al., 2015). Consistent 

with these reports, immunohistochemical analysis with a human CD3 specific mAb detected 

T cells in the liver, small intestine and skin in humanised mice with GVHD. In support of this 

observation,hP2X7 mRNA was detected in the livers and small intestines of humanised mice 

using qPCR probes to the P2X7B splice variant, which is predominantly expressed in human 

T cells (Adinolfi et al., 2010), with P2X7 present on both hCD4+ and hCD8+ T cells (Sluyter 

and Wiley, 2014).   

Collectively, the above data investigating the effect of the P2X7 antagonist, BBG, in a 

humanised mouse model of GVHD both confirms findings from previous studies using P2X7 

antagonists in allogeneic mouse models of GVHD, and provides additional novel insights. 

Similar to allogeneic mouse models of GVHD (Wilhelm et al., 2010, Fowler et al., 2014, 

Zhong et al., 2016), P2X7 antagonism reduced serum IFN-γ, immune infiltrates and tissue 

damage in humanised mice with GVHD. By contrast, no therapeutic benefit (weight loss, 

clinical score or survival) was observed in humanised mice with GVHD, but therapeutic 

benefits were observed in allogeneic mouse models of GVHD (Wilhelm et al., 2010, Fowler 

et al., 2014, Zhong et al., 2016). Besides obvious laboratory, species and mouse strain 

differences, a number of other notable differences remain between these models of GVHD. 

First, survival time in these allogeneic mouse models (Wilhelm et al., 2010, Fowler et al., 

2014) is at least half that compared to humanised mice. Thus, extended or delayed injection 



www.manaraa.com

116 
 

regimes may be required to show therapeutic benefits in humanised mice. Second, in the 

allogeneic mouse models, P2X7 antagonists were injected daily for the first 10 days 

(Wilhelm et al., 2010, Fowler et al., 2014) or twice weekly for 28 days (Zhong et al., 2016) 

in contrast to five injections over the first 8 days in our humanised mouse model. Thus, more 

frequent or extended injection regimes may be required to show therapeutic benefits with 

BBG in humanised mice with GVHD. Third, the two studies that reported improved survival 

in the allogeneic mouse models (Wilhelm et al., 2010, Fowler et al., 2014) used the P2X7 

antagonists, pyridoxal-phopshate-6-azophenyl-2’,4-disulphonic acid, KN-62 or stavudine, 

rather than BBG. Thus, testing of P2X7 antagonists other than BBG in humanised mice with 

GVHD may be warranted. Although it should be noted that BBG at either 50 or 70 mg/kg 

(i.p. twice weekly for 28 days) prevented weight loss in one allogeneic mouse model of 

GVHD (Zhong et al., 2016), indicating BBG can display some therapeutic benefit in this 

disease. Finally, in each of the allogeneic mouse models, recipient mice were first irradiated 

(Wilhelm et al., 2010, Fowler et al., 2014, Zhong et al., 2016) , which causes ATP release 

(Wilhelm et al., 2010). In contrast, the humanised mice in our study were not irradiated, 

potentially eliminating this initial release of ATP, which may subsequently activate P2X7 to 

promote disease. Thus, the therapeutic potential of P2X7 antagonists in irradiated humanised 

mice with GVHD could be investigated. 

Finally, this study showed that NSG mice demonstrate full-length functional P2X7. Firstly, 

qPCR revealed expression of P2RX7 mRNA in the spleens, livers and small intestines of 

NSG mice. Secondly, immunoblotting revealed a major band at 81 kDa, correlating to 

glycosylated, full-length P2X7 (Pupovac et al., 2015). Finally, ATP induced YO-PRO-12+ 

uptake into splenic DCs from NSG mice, a process impaired by BBG, and which was absent 

in splenic DCs from P2X7 KO mice. ATP-induced YO-PRO-12+ uptake into splenic DCs 

from NSG mice was significantly higher than splenic DCs from C57BL/6 mice. This is most 
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likely due to the absence and presence of a loss-of-function mutation (P451L) (Adriouch et 

al., 2002) in NSG and C57BL/6 mice, respectively. Although it is yet to be formally 

demonstrated that NSG mice are wild-type at this allele, NSG mice are derived from NOD 

mice (Shultz et al., 2007), a strain known to encode a proline residue at amino acid position 

451 (Syberg et al., 2012). 

In conclusion, the current study demonstrates P2X7 blockade with BBG can significantly 

reduce serum hIFN-γ, and inflammation and tissue damage in a humanised mouse model of 

GVHD. The similar clinical course with skewing to Th17 suggests that clinically P2X7 

blockade may be of additive benefit if combined with strategies that limit Th17, such as IL-6 

receptor blockade (Koenecke et al., 2009). This study suggests a potential benefit for P2X7 

blockade, but highlights the need to also address alternative pathways of immune activation.  
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4.2. Abstract 
Allogeneic haematopoietic stem cell transplantation (HSCT) is a frequent curative therapy for 

numerous haematological malignancies. However, HSCT is limited by the occurrence of 

graft-versus-host disease (GVHD), with current therapies restricted to general 

immunosuppression. Activation of the P2X7 receptor by extracellular adenosine triphosphate 

(ATP) causes tissue damage and subsequent inflammation exacerbates GVHD. Short-term 

pharmacological blockade of P2X7 has been shown to reduce clinical disease and/or reduce 

inflammatory markers in allogeneic and humanised mouse models of GVHD. The current 

study demonstrates that long-term P2X7 blockade by intra-peritoneal injection of Brilliant 

Blue G (BBG) thrice weekly for up to 10 weeks did not impact human (h) peripheral blood 

mononuclear cell (PBMC) engraftment, predominantly T cells, in blood at 3 weeks post-

hPBMC injection or in spleens at end-point in humanised mice. Histological analysis 

demonstrated long-term BBG treatment reduced leukocyte infiltration in the livers of 

humanized mice. Immunohistochemical analysis demonstrated that BBG treatment reduced 

liver apoptosis. Immunohistochemical analysis confirmed reduced human T cell infiltration 

and apoptosis in livers from long-term BBG-treated humanised mice. Long-term BBG 

treatment did not alter mRNA expression of pro-inflammatory markers in tissues or serum 

human interferon (IFN)-γ concentrations. Therefore, this study demonstrates that P2X7 

activation plays a role in GVHD pathogenesis in the livers of humanised mice, supporting a 

role for this receptor in GVHD development in HSCT recipients.  
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4.3. Introduction 

Allogeneic haematopoietic stem cell transplantation (HSCT) is a frequent curative method for 

various haematological malignancies. However, a major side effect of this treatment is graft-

versus-host disease (GVHD). GVHD occurs in approximately half of HSCT recipients 

(Jagasia et al., 2012) and results in damage to the liver, gastrointestinal tract and skin, with 

the liver affected in approximately 50% of GVHD patients (Martin et al., 1990). GVHD 

emerges due to transplanted effector T cells mounting an immune response against the host 

(Billingham, 1965). This immune response is driven by release of cytokines and danger 

associated molecular patterns (DAMP), which causes antigen presenting cells to release 

cytokines resulting in activation of T cells (Reddy and Ferrara, 2003, Ferrara and Reddy, 

2006, Ferrara et al., 2009). T cell activation leads to proliferation and differentiation of T cell 

subsets such as Th1 cells which release interferon (IFN)-γ (Reddy and Ferrara, 2003, Ferrara 

and Reddy, 2006), and Th17 cells which release interleukin (IL)-17, resulting in 

inflammatory damage (Yi et al., 2009, Gartlan et al., 2015). Current therapies are largely 

limited to general immunosuppression through the use of steroids (Jaglowski and Devine, 

2014), highlighting the need for better therapies. 

Targeting a pathway in one of the above stages of GVHD represents a potential therapeutic 

strategy. Purinergic signalling is an important pathway of immune cell signalling (Yip et al., 

2009) and plays important roles in transplantation (Vergani et al., 2014, Apostolova and 

Zeiser, 2016b, Castillo-Leon et al., 2018). Of all the purinergic receptors, the P2X7 receptor 

is the most widely studied in immune and inflammatory responses (Di Virgilio et al., 2018). 

Activation of P2X7 induces a number of downstream effects including DC activation and 

cytokine release (Saez et al., 2017), T cell activation (Schenk et al., 2008) and inhibition of 

regulatory T cells (Schenk et al., 2011). Thus, given the central role of these immune 

processes in GVHD, blockade of P2X7 represents a potential therapeutic approach to limit 
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GVHD development. In allogeneic mouse models the DAMP, adenosine triphosphate (ATP), 

is released from damaged and dying cells, to promote GVHD (Wilhelm et al., 2010). ATP 

exacerbates GVHD by activating P2X7 in allogeneic mouse models (Wilhelm et al., 2010, 

Fowler et al., 2014, Zhong et al., 2016). Short term pharmacological blockade of P2X7 with 

either KN-62, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid or stavudine during the 

first week post-transplantation can extend survival of recipient mice in these models 

(Wilhelm et al., 2010, Fowler et al., 2014). Whilst, P2X7 blockade with Brilliant Blue G 

(BBG) (50 or 75 mg/kg) twice per week for 4 weeks reduces weight loss and liver GVHD in 

an allogeneic mouse model (Zhong et al., 2016). Finally, our group recently demonstrated 

that short-term blockade of P2X7 with BBG (50 mg/kg, days 0, 2, 4, 6, 8) reduced serum 

human (h) IFN-γ and tissue inflammation in a humanised non-obese diabetic severe 

combined immunodeficient IL-2 gamma receptor null (NOD-SCID-IL2Rγnull; NSG) mouse 

model of GVHD (Chapter 3).    

To further extend the above observations ((Wilhelm et al., 2010, Fowler et al., 2014, Zhong 

et al., 2016) and Chapter 3) to humans, the current study investigated the effect of long-term 

P2X7 blockade with BBG (50 mg/kg; thrice weekly for up to 10 weeks) in a humanised NSG 

mouse model of GVHD. Similar to our previous study (Chapter 3), injection of BBG did not 

impact human leukocyte engraftment, weight loss, clinical score or survival. Notably, this 

regime reduced leukocyte infiltration and apoptosis in the livers of mice, supporting a role for 

P2X7 activation in GVHD pathogenesis in the liver. 
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4.4. Materials and Methods 

4.4.1. Humanised Mouse Model of GVHD 

Experiments with human blood and mice were approved by the Human Animal Ethics 

Committees, respectively (University of Wollongong, Wollongong, Australia). Humanised 

NSG mice were established as described (Chapter 3). Briefly, hPBMCs, isolated by density 

centrifugation using Ficoll-Paque PLUS (GE Healthcare; Uppsala, Sweden), were injected 

intra-peritoneally (i.p) (10 x 106 hPBMCs/mouse) into female NSG mice aged 5-7 weeks 

(Westmead Animal Research Facility, Westmead, Australia) housed at the University of 

Wollongong. Mice were injected i.p. 2 hours later with 200 μL of saline (saline group) or 

saline containing BBG (Sigma-Aldrich; St Louis, MO, USA) (50 mg/kg; BBG group), then 

thrice weekly (every second or third day apart) for up to 10 weeks. At 3 weeks post-hPBMC 

injection, engraftment was examined by immunophenotyping of tail vein blood. Mice were 

monitored up to 10 weeks for signs of clinical GVHD using a scoring system, giving a total 

clinical score out of 10 as described (Chapter 3) and euthanised at 10 weeks post-hPBMC 

injection, or earlier if the clinical score was ≥ 8 or weight loss was ≥ 10%, as per the 

approved ethics protocol.  

4.4.2. Immunophenotyping by Flow Cytometry 

Tail vein blood and spleen cells were obtained from mice and lysed with ammonium chloride 

potassium buffer and immunophenotyped as described (Chapter 3) with the addition of an 

allophycocyanin conjugated mouse anti-hCD56 monoclonal antibody (clone: B159) (BD, San 

Jose, CA, USA). Data was collected using a BD Fortessa-X20 Flow Cytometer using band 

pass filters of 525/50 for fluorescein isothiocyanate, 586/15 for R-phycoerythrin, 695/40 for 

peridinin chlorophyll protein and 670/30 for allophycocyanin. The relative percentages of 

cells were analysed using FlowJo software v8.7.1 (TreeStar Inc.; Ashland, OR, USA) (Figure 

S1 and Figure S2).  
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4.4.3. Histological and Immunohistological Analysis  

Formalin-fixed tissue sections (5 μm) were stained with haematoxylin and eosin (POCD; 

Artarmon, Australia) for histological analysis. Other formalin-fixed tissue sections were also 

stained with either rabbit anti-hCD3 mAb (clone: EP449E) (Abcam, Cambridge, UK) and 

haematoxylin as described (Chapter 3) or an In situ Apoptosis Detection Kit (Abcam) as per 

the manufacturer’s instructions. Total numbers of leukocyte and hCD3+ T cell infiltrates and 

apoptotic cells in livers were quantified from captured images (Leica DMRB microscope, 

Wetzlar, Germany) using FIJI is just ImageJ (FIJI) software (Schindelin et al., 2012). Data is 

represented as the total number of cells measured per field of view. Epidermal thickness of 

skin sections was measured as described (Chapter 7). 

4.4.4. Quantitative Real-Time PCR  

RNA was isolated using TRIzol reagent (Thermo Fisher Scientific) and converted to cDNA 

using the qScript cDNA Synthesis Kit (Quanta Biosciences, Beverly, MA, USA) as per the 

respective manufacturer’s instructions. Quantitative real-time PCR (qPCR) was performed as 

described (Chapter 7) with the addition of a human tumour necrosis factor (TNF)-α 

(Hs01113624_g1) primers (Thermo Fisher Scientific). Human gene expression was 

normalised to cDNA from hPBMCs, directly isolated from a human donor. Murine gene 

expression was normalised to cDNA from a spleen of a BALB/c mouse (Bartlett et al., 2017). 

4.4.5. ELISA 

Serum was obtained from mice as described (Chapter 3), and hIFN-γ and hIL-17 

concentrations determined using respective Ready-Set-Go! ELISA Kits (eBioscience, San 

Diego, CA, USA) as per the manufacturer’s instructions.  

4.4.6. Statistical Analysis 

Data is given as mean ± standard deviation (SD). Statistical differences were determined 

using the Student’s t-test for single comparisons or one-way analysis of variance (ANOVA) 



www.manaraa.com

126 
 

with Tukey’s post-hoc test for multiple comparisons. Weight and clinical score over time 

were compared using a repeated measures two-way ANOVA with Tukey’s post-hoc test for 

multiple comparisons. Survival (median survival time; MST) was compared using the log-

rank (Mantel-Cox) test. Mortality was compared using Fisher’s exact test. All statistical 

analyses and graphs were generated using GraphPad Prism 5 for PC (GraphPad Software, La 

Jolla, CA, USA). P < 0.05 was considered significant for all tests. 

 

4.5. Results 

4.5.1. BBG Does Not Impact Engraftment of Human Cells in NSG Mice 

To determine if long-term P2X7 blockade can ameliorate disease development in a 

humanised mouse model of GVHD, NSG mice injected with hPBMCs, were subsequently 

injected with the P2X7 antagonist BBG (Sluyter, 2017) at 50 mg/kg or with saline thrice 

weekly for up to 10 weeks. To investigate if human cell engraftment was affected by BBG 

treatment, flow cytometric analysis of blood was conducted at 3 weeks post-hPBMC 

injection (Supplementary Figure 4.1.). Mice injected with BBG demonstrated a similar 

frequency of human leukocytes (13.2 ± 2.4% hCD45+ mCD45- cells, n = 10) compared to 

mice injected with saline (control) (9.7 ± 2.8% hCD45+ mCD45- cells, n = 7) (P = 0.3561) 

(Figure 4.1.a.). T cells comprised the majority of hCD45+ cells, and the frequencies of T cells 

did not vary between mice injected with BBG (93.2 ± 1.4% hCD3+ hCD56- cells, n = 10) or 

saline (91.6 ± 2.1% hCD3+ hCD56- cells, n = 7) (P = 0.5188) (Figure 4.1.b.). In all mice, 

there was a small population of hCD3+ hCD56+ cells, potentially natural killer T (NKT) cells 

(Ortaldo et al., 1991), but the frequency of these cells did not vary between mice injected 

with BBG (3.1 ± 1.1% hCD3+ hCD56+ cells, n = 10) or saline (3.3 ± 1.0% hCD3+ hCD56+ 

cells, n = 7) (P = 0.8768) (Figure 4.1.c.). Both groups of mice demonstrated engraftment of a 
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small proportion of natural killer (NK) cells (hCD3- hCD56+), which did not significantly 

differ between mice injected with BBG (1.0 ± 0.3% hCD3- hCD56+ cells, n = 10) or saline 

(2.3 ± 0.8% hCD3- hCD56+ cells, n = 7) (P = 0.1067) (Figure 4.1.d.). Finally, there was a 

small population of cells that were neither T, NKT, nor NK cells; the frequency of which did 

not vary between mice injected with BBG (2.7 ± 0.8% hCD3- hCD56- cells, n = 10) or saline 

(2.8 ± 1.1% hCD3- hCD56- cells, n = 7) (P = 0.9854) (Figure 4.1.e.).  

Splenocyte analysis at end point (Supplementary Figure 4.2.) showed human leukocytes 

comprised the majority of total murine and human leukocytes. Mice injected with BBG 

exhibited a similar frequency of human leukocytes (76.7 ± 3.2% hCD45+ mCD45- cells, n = 

10) compared to mice injected with saline (71.4 ± 6.1% hCD45+ mCD45- cells, n = 7) (P = 

0.4308) (Figure 4.1.f.). Similar to engraftment at 3 weeks post-hPBMC injection, T cells 

comprised the majority of human leukocytes in the spleen, and both mice injected with BBG 

(86.4 ± 5.2% hCD3+ hCD56- cells, n = 10) and mice injected with saline (96.1 ± 1.9% hCD3+ 

hCD56- cells, n = 7) demonstrated similar frequencies of T cells (P = 0.1390) (Figure 4.1.g.). 

Similar to blood, there was a small population of hCD3+ hCD56+ cells, and the percentage of 

these cells did not vary between mice injected with BBG (1.3 ± 0.6% hCD3+ hCD56+ cells, n 

= 10) or saline (0.9 ± 0.1% hCD3+ hCD56+ cells, n = 7) (P = 0.5154) (Figure 4.1.h.). Few 

mice demonstrated engraftment of NK cells in spleens at time of euthanasia, which did not 

significantly differ between mice injected with BBG (0.7 ± 0.5% hCD3- hCD56+ cells, n = 

10) or saline (0.1 ± 0.0% hCD3- hCD56+ cells, n = 7) (P = 0.3064) (Figure 4.1.i.). Finally, 

there was a remaining population of cells that were neither T nor NK cells; the frequency of 

which did not vary between mice injected with BBG (10 ± 4.2% hCD3- hCD56- cells, n = 10) 

or saline (3.0 ± 2.0% hCD3- hCD56- cells, n = 7) (P = 0.1868) (Figure 4.1.j.). 

Human T cell analysis (hCD3+) in spleens at end point (Supplementary Figure 4.2.) revealed 

that mice injected with BBG or saline contained similar frequencies of hCD4+ T cells (71.3 ± 
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4.7%, n = 10 vs. 75.6 ± 3.8%, n = 7, respectively, P = 0.5345) and hCD8+ T cells (17.9 ± 

2.9%, n = 10 vs 14.6 ± 2.3%, n = 7, respectively, P = 0.4500) (Figure 4.1.k.). In both mice 

injected with BBG or saline, the percentages of hCD4+ T cells were significantly greater than 

that of hCD8+ T cells (both P < 0.0001 and P < 0.0001, respectively) (Figure 4.1.k.).  

 

 

humanised mouse model of GVHD (a-k) NOD-SCID-IL2Rγnull (NSG) mice were injected intra-
peritoneally (i.p.) with 10 x 106 human (h) peripheral blood mononuclear cells (hPBMCs), and 
subsequently with saline (n = 7) or saline containing Brilliant Blue G (BBG) (50 mg/kg) (n = 10) 
thrice weekly. The percentages of human leukocytes in (a-e) blood at 3 weeks post-hPBMC injection 
and (f-k) spleens at end-point were determined by flow cytometry. (a, f) hCD45+ leukocytes are 
expressed as a percentage of total mCD45+ and hCD45+ leukocytes. (b, g) hCD3+ hCD56-, (c, h) 
hCD3+ hCD56+, (d, i) hCD3- hCD56+ and (e, j) hCD3- hCD56- cells are expressed as a percentage of 
total hCD45+ leukocytes. (k) hCD4+ and hCD8+ T cell subsets are expressed as a percentage of total 
hCD3+ leukocytes. Data represents group means ± SD; symbols represent individual mice; *** P < 
0.0001 compared to corresponding hCD8+ T cells.  

Figure 4.1. Long-term BBG treatment does not affect engraftment of human cells in a 
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4.5.2. BBG Does Not Prevent Clinical GVHD in NSG Mice 

For up to 10 weeks, mice were monitored for weight loss and signs of GVHD. All mice 

injected with BBG or saline exhibited weight loss from 4 weeks, with similar weight loss 

between groups over the course of the study (P = 0.2853) (Figure 4.2.a.). Both groups of 

mice began to show signs of mild GVHD from day 35, and both mice injected with BBG or 

saline had similar clinical scores at end point (5.8 ± 0.5, n = 10 vs. 5.9 ± 0.7, n = 7, 

respectively; P = 0.9494), and mean clinical scores over 10 weeks (P = 0.1286) (Figure 

4.2.b.). Similar survival was also observed between mice injected with BBG (mortality of 

90%, n = 10) or saline (mortality of 86.7%, n = 7) (P = 1.000) (Figure 2c), and mice injected 

with BBG or saline also demonstrated similar MSTs (45.5 days vs. 52.0 days, respectively) 

(P = 0.3014) (Figure 4.2.c.). 

 

 

mouse model of GVHD. (a-c) Saline- and BBG-injected humanised NOD-SCID-IL2Rγnull (NSG) 
mice (Figure 1) were monitored for (a) weight loss, (b) clinical score (using a scoring system, giving a 
total clinical score out of 10), and (c) survival for up to 10 weeks. Data represents (a, b) group means 
± SD or (c) percent survival (saline n = 7; BBG n = 10). 

 

Figure 4.2. Long-term BBG treatment does not affect disease development in a humanised  
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4.5.3. BBG Reduces Leukocyte Infiltration and Apoptosis in Livers of NSG 

Mice 

Short-term BBG has been shown to partly reduce leukocyte infiltrates, predominantly T cells, 

and apoptosis in GVHD target organs including liver, small intestine and skin in humanised 

NSG mice (Chapter 3). Therefore, to assess if long-term BBG treatment could reduce 

leukocyte infiltration and damage, target tissues from humanised NSG mice were analysed 

via histology. There were no histological differences in the small intestines or skin, including 

epidermal thickening, of BBG- and saline-injected mice (Supplementary Figure 4.2.). 

However, livers from mice injected with BBG demonstrated reduced histological damage 

with less apoptotic cells (Figure 4.3.a.). Image analysis demonstrated a significant 52% 

reduction in leukocytes in livers from BBG-injected mice (517 ± 244 cells/field of view; n = 

9) compared to saline-injected mice (1082 ± 324 cells/field of view; n = 6) (P = 0.0020) 

(Figure 4.3.a.). 

To determine the identity of the cells above (Figure 4.3.a.), immunohistochemistry using an 

anti-hCD3 mAb was conducted. Image analysis demonstrated a 55% reduction in CD3+ cell 

infiltration in livers from BBG-injected mice (117 ± 157 cells/field of view; n = 4) compared 

to saline-injected mice (263 ± 404 cells/field of view; n = 4), however this difference did not 

reach statistical significance (P = 0.5263) (Figure 4.3.b.). Moreover, the number of hCD3+ T 

cells detected (Figure 4.3.b.) represented only 24% of the total leukocytes detected by 

histology (Figure 4.3.a.). Finally, an In Situ Apoptosis detection kit was used to confirm that 

there was reduced apoptosis in the liver. Image analysis demonstrated there was a significant 

57% decrease in apoptotic cells in livers from BBG-injected mice (65 ± 32 cells/field of 

view; n = 4) compared to saline-injected mice (150 ± 47 cells/field of view; n = 4) (P = 

0.0244) (Figure 4.3.c.). 
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mice in a humanised mouse model of GVHD. (a-c) Livers from saline- and BBG-injected 
humanised NOD-SCID-IL2Rγnull (NSG) mice (Figure 1) at end-point were stained with (a) 
haematoxylin and eosin, (b) anti-human (h) CD3 monoclonal antibody and haematoxylin or (c) 
terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end and methyl green. (a-c) 
Images were captured by microscopy; representative images from one mouse per group shown; bar 
represents 100 μm. Image analysis was used to quantitate the mean number of cells per field of view 
from three different captured images per mouse. Data represents group means ± SD (saline n = 4-6; 
BBG n = 4-9); symbols represent individual mice; * P < 0.05 or ** P < 0.01 to saline. 

 

Figure 4.3. Long-term BBG treatment reduces leukocyte infiltration and apoptosis in livers of  
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4.5.4. BBG Does Not Impact Cytokine Expression in the Liver of NSG Mice 

IFN-γ, IL-17 and TNF-α are important pro-inflammatory cytokines implicated in GVHD 

pathogenesis (Yi et al., 2009, Gartlan et al., 2015). To investigate if long-term BBG 

treatment alters these cytokines in the liver, hIFN-γ, hIL-17 and hTNF-α expression were 

analysed by qPCR. hIFN-γ expression was similar in mice injected with BBG (2.8 ± 0.3, n = 

7) or saline (3.0 ± 0.6, n = 7) (P = 0.7347) (Figure 4.4.a.). There was a two-fold increase in 

hIL-17 expression in mice injected with BBG (4.0 ± 2.0, n = 7) compared to mice injected 

with saline (1.8 ± 0.5, n = 7), but this did not reach statistical significance (P = 0.2940) 

(Figure 4.4.b.). hTNF-α expression was low, and similar in mice injected with BBG (0.10 ± 

0.03, n = 7) or saline (0.08 ± 0.03, n = 7) (P = 0.7754) (Figure 4.4.c.). 

Short-term BBG treatment reduces serum IFN-γ in allogeneic (Wilhelm et al., 2010) and 

humanised (Chapter 3) mouse models of GVHD. To determine if prolonged BBG treatment 

could alter the amount of these cytokines, serum hIFN-γ and hIL-17 concentrations in 

humanised NSG mice were assessed by ELISA. hIFN-γ was present in the serum of all mice 

(Figure 4.4.d.). In contrast to previous data involving short-term BBG treatment (Chapter 3), 

serum hIFN-γ concentrations were similar in mice injected with BBG (15.8 ± 3.5 ng/mL, n = 

10) or saline (14.9 ± 3.2 ng/mL, n = 7) (P = 0.8462) (Figure 4.4.d.). hIL-17 was not detected 

in the serum of any mice injected with BBG (n = 10) or saline (n = 7) using an ELISA with a 

reported sensitivity of 4 pg/mL (eBioscience). 

P2X7 expression is significantly increased in livers of mice with allogeneic GVHD (Wilhelm 

et al., 2010). Therefore, to determine the impact of P2X7 blockade on expression of hP2X7 

and mP2X7, livers of humanised NSG mice were analysed by qPCR. There was a four-fold 

increase in relative hP2X7 expression in mice injected with BBG (8.7 ± 5.6, n = 7) compared 

to mice injected with saline (2.0 ± 0.6, n = 7), however this did not reach statistical 

significance (P = 0.2547) (Figure 4.4.e.). Relative mP2X7 expression was similar in mice 
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injected with BBG (0.07 ± 0.02, n = 7) or saline (0.07 ± 0.01, n = 7) (P = 0.9986) (Figure 

4.4.f.). 

 

a humanised mouse model of GVHD. (a-f) cDNA from livers of saline- and BBG-injected 
humanised NOD-SCID-IL2Rγnull (NSG) mice at end-point (Figure 1) were used to assess the relative 
expression of human (h) (a) interferon (IFN)-γ, (b) interleukin (IL)-17, (c) tumour necrosis factor 
(TNF)-α, (e) hP2X7, and (f) murine (m) P2X7 by qPCR. (d) Concentrations of serum hIFN-γ from 
mice at end-point were analysed by ELISA. (a-f) Data represents group means ± SD (saline n = 7; 
BBG n = 7-9); symbols represent individual mice. 

 

 

4.6. Discussion 

The current study demonstrated that a long-term regime of P2X7 blockade using BBG (50 

mg/kg i.p. thrice weekly for up to 10 weeks) can reduce liver inflammation and apoptosis in a 

humanised mouse model of GVHD. Saline-injected control mice exhibited characteristic 

leukocyte infiltration and apoptosis in the liver, consistent with previous observations in 

humanised NSG mice (King et al., 2009, Vlad et al., 2009). The long-term regime of BBG 

Figure 4.4. Long-term BBG treatment does not affect serum or liver inflammatory markers in  
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reduced leukocyte infiltrates, including human T cells, into the livers compared to control 

mice. This reduction was greater than our previous study using a short-term regime of BBG 

(50 mg/kg i.p. on days 0, 2, 4, 6, 8) in humanised NSG mice (Chapter 3). Leukocyte 

infiltrates are also reduced in livers from allogeneic mice following a long-term regime of 

BBG (50 or 75 mg/kg i.p. twice weekly for four weeks) (Zhong et al., 2016). The long-term 

BBG regime in the current study also reduced apoptosis in livers, an effect that was greater 

than the previous short-term BBG regime in humanised NSG mice (Chapter 3). Similarly, the 

long-term BBG regime in allogeneic mice also reduced inflammatory damage (Zhong et al., 

2016). The reduction in leukocyte infiltrates and apoptosis in livers is also similar to other 

GVHD therapies in humanised mice (Vlad et al., 2009, Abraham et al., 2012, Ehx et al., 

2017). Notably, P2X7 blockade is an efficacious therapy in drug-induced inflammatory liver 

damage (Hoque et al., 2012, Amaral et al., 2013). Thus, the current and past (Zhong et al., 

2016) studies indicate that P2X7 is important for liver GVHD development and that P2X7 

represents a potential therapeutic target in HSCT to prevent this form of GVHD.  

The current study demonstrated that a long-term regime of BBG did not impact clinical 

disease in humanised mice. This result is similar to that of the short-term BBG regime in this 

model (Chapter 3) but differs to that of a long-term BBG regime in the allogeneic mouse 

model of GVHD above (Zhong et al., 2016). In the latter study, BBG prevented weight loss, 

with a stronger effect observed with 75 mg/kg BBG compared to 50 mg/kg BBG, but clinical 

score and survival were not reported. Nevertheless, since the larger dose of 75 mg/kg 

significantly reduced histological GVHD and weight loss compared to the dose of 50 mg/kg 

in this allogeneic mouse model, investigation of this or larger doses in a humanised mouse 

model are warranted. Moreover further studies are required to reconcile why clinical GVHD 

development in humanised mice is not altered by BBG, despite BBG impairing histological 

liver GVHD in these mice. Finally, it should be noted that administration of BBG into 
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humanised NSG mice caused rapid weight gain, the reasons for which remain unknown. 

However, P2X7 blockade with BBG or P2RX7 gene deficiency also induces weight gain in 

C57BL/6 mice within one week (Costa-Junior et al., 2011). This previous study hypothesised 

that a consensus motif similar to Janus kinase 2 within the C-terminus of P2X7 may be a 

substrate of protein-tyrosine phosphatase 1B, which has known roles in obesity (Rondinone 

et al., 2002). Thus, blockade of P2X7 may induce an initial weight gain in mice via 

modulation of this phosphatase. 

The long-term regime of BBG in the current study did not detect any differences in the 

expression of hIFN-γ, hIL-17, and hTNF-α, or mP2X7 in the livers of humanised mice. 

However, there was a 2-fold increase in hP2X7 in the liver, similar to the 1.7-fold increase in 

the short-term regime (Chapter 3), but this did not reach statistical significance. This result is 

somewhat unexpected given the reduced leukocyte infiltration and apoptosis in the livers of 

these mice. This suggests that other molecules may be controlling T cell migration and T cell-

mediated damage in the livers of these mice. Alternatively, the similar expression of these 

molecules may simply reflect the comparison of livers at end-stage disease, but this does not 

explain observed differences in leukocyte infiltration and apoptosis. Analysis of liver samples 

earlier in disease progression may reveal further differences between BBG- and saline-treated 

mice.  

Short-term (Chapter 3) but not long-term BBG treatment (the current study) reduced serum 

hIFN-γ in humanised mice. The reason for this difference remains unknown, but suggests 

long-term P2X7 blockade negates any benefits observed with short-term P2X7 blockade in 

relation to serum hIFN-γ. This suggests that P2X7 blockade shortly after hPBMC 

engraftment reduces the development of hIFN-γ-producing T cells in humanised mice, 

similar to P2X7 deficiency reducing IFN-γ production early in disease development in 

allogeneic mice (Ghiringhelli et al., 2009). However, P2X7 blockade at later stages of 
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engraftment and GVHD development may promote development of hIFN-γ-producing T cells 

in humanised NSG mice. Alternatively, comparison of serum hIFN-γ concentrations between 

the current and previous (Chapter 3) studies indicates that the long-term regime with saline 

reduced serum hIFN-γ compared to the short-term saline regime. This suggests long-term 

injections of saline may reduce some disease parameters in this humanised mouse model of 

GVHD. In support of this, injection of saline is used in other inflammatory disease models to 

rescue mice from weight loss ((van der Fits et al., 2009) and Chapter 7).  

Finally, the current study demonstrates that a long-term BBG regime does not affect 

engraftment of donor human cells in NSG mice. Although the clinical benefits of this regime 

were limited, this indicates long-term P2X7 blockade may permit reconstitution of the 

immune system, an essential aim of HSCT (Paloczi, 2000). In the current study, the majority 

of engrafted leukocytes were T cells, consistent with previous studies ((King et al., 2008, 

King et al., 2009) and Chapter 3). Our previous study demonstrated that B cells are not 

present in the blood or spleens of humanised NSG mice, but the identity of the remaining 

human leukocytes remained unknown (Chapter 3). In the current study, NK cells constituted 

a portion of the remaining leukocyte population, consistent with similar frequencies of NK 

cells in humanised NSG mice observed by others (Gregoire-Gauthier et al., 2012, Tanaka et 

al., 2012b). NK cells contribute to the graft-versus-leukemia effect but not GVHD in both 

mice (Hüber et al., 2015) and humans (Ruggeri et al., 2002), suggesting that NSG mice 

injected with hPBMCs could be potentially used to study the graft-versus-leukemia effect. 

Importantly, BBG did not affect NK cell engraftment suggesting P2X7 blockade may not 

impact graft-versus-leukemia immunity, another key aim of HSCT. The current study also 

demonstrated, for the first time, that humanised NSG mice engraft a small proportion of NKT 

cells (Koreck et al., 2002), although in the absence of additional markers these cells may 

represent activated T cells instead or in part (Kelly-Rogers et al., 2006). NKT cells suppress 
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GVHD in allogeneic HSCT in mice (Lan et al., 2001, Haraguchi et al., 2005, Schneidawind 

et al., 2015) and higher numbers of NKT cells in humans correlates to reduced GVHD 

(Rubio et al., 2012, Chaidos et al., 2012). BBG did not alter the percentage of these cells 

indicating that P2X7 blockade does not affect engraftment of NKT cells. Thus, humanised 

NSG mice may help elucidate the role of human NK and NKT cells in GVHD. It should be 

noted that a limitation of the current study was that the flow cytometric analyses did not 

include gating of singlets or dead cell exclusion using a viability dye. Thereby increasing the 

likelihood of small errors in determining the proportions of human leukocyte subsets 

especially rarer subsets such as NK and NKT cells. 

The current study demonstrated that long-term P2X7 blockade does not impact human 

leukocyte engraftment, weight loss, clinical score or mortality associated with GVHD. 

However, this regime can reduce leukocyte infiltration and apoptosis in the liver. Therefore, 

this study demonstrates that P2X7 activation plays a role in GVHD pathogenesis in the livers 

of humanised mice, supporting a role for this receptor in GVHD development in HSCT 

recipients. Moreover, given that long-term P2X7 blockade does not affect donor human 

leukocyte engraftment or appear to have any other adverse effects, P2X7 may represent a 

potential therapeutic target to reduce liver GVHD in HSCT recipients. 
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5.2. Abstract 
Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative therapy for a 

number of haematological malignancies, but is limited by the development of graft-versus-

host disease (GVHD). CD39 and CD73 form an ecto-enzymatic pathway that hydrolyses 

extracellular adenosine 5’-triphosphate (ATP) to adenosine, which respectively exacerbate or 

alleviate disease in allogeneic mouse models of GVHD. The current study aimed to explore 

the role of the CD39/CD73 pathway and adenosine receptor (AR) blockade in a humanised 

mouse model of GVHD. Immunodeficient non-obese diabetic-severe combined 

immunodeficiency-IL-2 receptor γnull (NSG) mice were injected with human peripheral blood 

mononuclear cells (PBMCs), and subsequently injected with the CD39/CD73 antagonist αβ-

methylene-ADP (APCP) (50 mg/kg) or saline for 7 days, or the AR antagonist caffeine (10 

mg/kg) or saline for 14 days. Mice predominantly engrafted human CD4+ and CD8+ T cells, 

with smaller proportions of human regulatory T (Treg) cells, invariant natural killer T (iNKT) 

cells, monocytes and dendritic cells (DCs). Neither APCP or caffeine altered engraftment of 

these human leukocyte subsets. APCP (CD39/CD73 blockade) augmented GVHD as shown 

through increased weight loss and worsened liver histology. This treatment also increased 

serum human IL-2 concentrations and decreased the frequency of human CD39-CD73-CD4+ 

T cells. In contrast, caffeine (AR blockade) did not alter GVHD severity or human serum 

cytokine concentrations (IL-2, IL-6, IL-10 or TNFα). In conclusion, blockade of CD39/CD73 

but not ARs augments disease in a humanised mouse model of GVHD. These results indicate 

that CD39/CD73 blockade maintains sufficient extracellular ATP concentrations to promote 

GVHD in this model. 
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5.3. Introduction 
Allogeneic haematopoietic stem cell transplantation (HSCT) is a common curative therapy 

for numerous haematological malignancies. However, 30-60% of transplant recipients 

develop graft-versus-host disease (GVHD) as a result of the donor T cells recognising the 

recipient tissue as ‘foreign’ (Jagasia et al., 2012). The first stage of GVHD is characterised by 

the initial release of cytokines, such as TNF-α and IL-6, from damaged tissue caused by the 

underlying disease or pre-conditioning regimes. Following this, activation of CD4+ T cells by 

antigen presenting cells, such as dendritic cells (DC), can cause release of T helper-1 (Th1) 

cytokines such as TNF-α, IFN-γ and IL-2. Finally, both CD4+ and CD8+ T cells migrate to 

the liver, gastrointestinal tract and skin to cause inflammatory damage of these tissues 

(Ferrara et al., 2009). Alternatively, IL-10 can suppress immune responses and can 

potentially reduce GVHD (Blazar et al., 1998). The T cell subsets regulatory T (Treg) cells 

and invariant natural killer T (iNKT) cells can also reduce GVHD severity (Schneidawind et 

al., 2013).  

Purinergic signalling includes the plasma membrane P1 and P2 receptors. P1 or adenosine 

receptors (AR; A1, A2A, A2B and A3) are activated by extracellular adenosine, while P2 

receptors (P2X1-7 and P2Y1, 2, 4, 6, 8, 11-14) are activated by a range of extracellular nucleotides 

including adenosine 5’-triphosphate (ATP) (Burnstock, 2007). Purinergic receptors are 

important in inflammation and immunity, and are expressed on immune cells including 

antigen presenting cells and T cells (Di Virgilio and Vuerich, 2015). In general activation of 

P2 receptors by extracellular ATP exerts pro-inflammatory effects (Idzko et al., 2014). In 

contrast, hydrolysis of ATP to adenosine by a pathway involving ecto-nucleoside 

triphosphate diphosphohydrolase-1 (CD39) and ecto-5’-nucleotidase (CD73) commonly 

results in anti-inflammatory effects via activation of ARs (Antonioli et al., 2013). 
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ATP, released from activated, damaged or dying cells, can activate P2 receptors and promote 

inflammatory responses in transplantation (Castillo-Leon et al., 2018). Moreover, P2 receptor 

activation can promote development of GVHD. Extracellular ATP can be released from 

damaged cells in GVHD (Wilhelm et al., 2010) and subsequently activate P2X7 to promote 

disease development in allogeneic (Wilhelm et al., 2010, Fowler et al., 2014, Zhong et al., 

2016) and humanised (Chapter 3) mouse models of GVHD. Likewise, P2Y2 activation by 

ATP can promote leukocyte infiltration and tissue damage in allogeneic models of GVHD 

(Klambt et al., 2015). In contrast, activation of ARs can limit GVHD development (Lappas et 

al., 2010, Han et al., 2013). Moreover, pharmacological blockade of ARs with caffeine 

(Tsukamoto et al., 2012) or A2A with SCH58261 (Wang et al., 2013) or genetic deletion of 

A2A (Tsukamoto et al., 2012, Wang et al., 2013) worsens disease in allogeneic mouse models 

of GVHD. Similarly, pharmacological blockade of CD39 and CD73 with αβ-methylene-ADP 

(APCP), which prevents adenosine generation and increases extracellular ATP (Moody et al., 

1984, Covarrubias et al., 2016), augments GVHD in allogeneic mouse models (Wang et al., 

2013). However, the roles of the CD39/CD73 pathway and ARs in a humanised mouse model 

of GVHD have not been reported.  

Using pharmacological approaches, the current study aimed to investigate the role of the 

CD39/CD73 pathway and AR blockade in disease development in a humanised mouse model 

of GVHD. In this model, immunodeficient non-obese diabetic-severe combined 

immunodeficiency-IL-2 receptor γnull (NSG) mice are injected with human peripheral blood 

mononuclear cells (PBMC) and develop clinical signs of GVHD over 10 weeks (Chapter 3). 

CD39/CD73 blockade with APCP, but not AR blockade with caffeine, augments GVHD in 

humanised mice. These results support the known roles of extracellular ATP in promoting 

GVHD, but do not provide evidence that extracellular adenosine can limit GVHD in this 

humanised model. 
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5.4. Materials and Methods 

5.4.1. Humanised Mouse Model of GVHD 

Experiments involving human blood and mice were approved by the respective Human and 

Animal Ethics Committees (University of Wollongong, Wollongong, Australia). A 

humanised mouse model of GVHD was used as described (Chapter 3). Briefly, hPBMCs, 

isolated by density centrifugation using Ficoll-Paque PLUS (GE Healthcare; Uppsala, 

Sweden), were injected intra-peritoneally (i.p.) (10 x 106 hPBMCs/mouse) into female NSG 

mice aged 5-7 weeks (Australian BioResources; Moss Vale, Australia). For CD73 blockade, 

humanised mice were injected i.p. daily with APCP (Sigma-Aldrich; St Louis, MO, USA) 

(50 mg/kg) or saline 2 hours following hPBMC injection and then daily over the next 6 days 

(Tsukamoto et al., 2012). For AR blockade, mice were injected i.p. daily with caffeine 

(Sigma-Aldrich) (10 mg/kg) or saline 2 hours following hPBMC injection and then daily for 

the next 13 days (Tsukamoto et al., 2012). At 3 weeks post-hPBMC injection, mice were 

checked for engraftment by immunophenotyping of tail vein blood. Mice were monitored for 

signs of GVHD using a scoring system, giving a total clinical score out of 10, as described 

(Chapter 3). Mice were euthanised at 10 weeks post-injection of hPBMCs, or earlier if 

exhibiting a clinical score of ≥ 8 or a weight loss of ≥ 10%, according to the approved animal 

ethics protocol.  

5.4.2. Immunophenotyping by Flow Cytometry 

Tail vein blood (week 3) and spleen cells (end-point) were obtained from mice and lysed with 

ammonium chloride potassium buffer and immunophenotyped as described (Chapter 3) using 

the antibodies listed in Table 5.1 and the gating strategy depicted in the Supplementary 

Figures S1 and S2. Data was collected using a BD (San Jose, CA, USA) Fortessa-X20 Flow 

Cytometer (using band pass filters 450/50 for BV421, 710/50 for BV711, 525/50 for FITC, 

586/15 for PE, 695/40 for PerCP-Cy5.5, 780/60 for PE-Cy7 and 670/30 for APCy). The 
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relative percentages of cells were analysed using FlowJo software v8.7.1 (TreeStar Inc.; 

Ashland, OR, USA) (FigureS1 and S2).  

Target Fluorochrome Clone* 
CD14 BV421 MϕP9 
CD127 BV421 HIL-7R-M21 
CD3 BV711 UCHT1 
CD45 FITC HI30 
CD8 FITC RPA-T8 
CD25 PE M-A251 
CD3 PE UCHT1 
CD83 PE HB15e 
CD4 PerCP-Cy5.5 L200 
CD45 PerCP-Cy5.5 30-F11 
CD73 PE-Cy7 AD2 
Vα24-Jα14 PE-Cy7 6B11 
CD19 APCy HIB19 
CD39 APCy TU66 

*All antibodies mouse anti-human except clone 30-F11 (rat anti-mouse); all antibodies from BD 
Biosciences except clone 6B11 (BioLegend). 

 

5.4.3. Histological Analysis 

Formalin-fixed tissue sections (5 μm) were stained with haematoxylin and eosin (POCD; 

Artarmon, Australia) and histology assessed as described (Chapter 3).  

5.4.4. Cytokine Analysis by a Flow Cytometric Multiplex Assay 

Serum was obtained from mice at end-point as described (Chapter 3) and cytokine 

concentrations were measured using a human Th1 LEGENDPlex kit (BioLegend; San Diego, 

CA, USA) as per the manufacturer’s instructions. 

5.4.5. Statistical Analysis 

Data is given as mean ± standard error of the mean (SEM). Statistical differences were 

calculated using Student’s t-test for single comparisons or one-way analysis of variance 

(ANOVA) with Tukey’s post-hoc test for multiple comparisons. Weight and clinical score 

Table 5.1. Monoclonal antibodies used for flow cytometry. 
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were analysed using a repeated measures two-way ANOVA. Survival (MST) was compared 

using the log-rank (Mantel-Cox) test. Mortality was compared using Fisher’s exact test. All 

statistical analyses and graphs were generated using GraphPad Prism 5 for PC (GraphPad 

Software; La Jolla, CA, USA). P < 0.05 was considered significant for all tests. 

 

5.5. Results  

5.5.1. APCP Does Not Impact hPBMC Engraftment in NSG Mice 

To investigate a role for the CD39/CD73 pathway in GVHD development in humanised NSG 

mice, these mice were injected with the CD39/CD73 inhibitor, APCP, using the same regime 

efficacious in an allogeneic mouse model of GVHD (Tsukamoto et al., 2012). First, to 

investigate whether APCP (CD39/CD73 blockade) altered hPBMC engraftment in NSG 

mice, 3 weeks post-hPBMC injection blood cells from APCP- (n = 9) or saline-injected (n = 

9) mice were analysed by flow cytometry. APCP- and saline-injected mice demonstrated 

similar frequencies of human leukocytes (hCD45+mCD45- cells), calculated as a percentage 

of total leukocytes (hCD45+mCD45-/(hCD45+mCD45- and hCD45-mCD45+)) (22.1 ± 3.9% 

and 22.2 ± 5.4%, respectively, P = 0.9869) (Figure 5.1.a.). These human leukocytes from 

APCP- and saline-injected mice predominately comprised T cells (hCD3+hCD19-) (99.5 ± 

0.1% and 99.3 ± 0.3%, respectively, P = 0.4897) (Figure 5.1.b.), with a small amount of non-

B/T cells (hCD3- hCD19-) (0.5 ± 0.1% and 0.7 ± 0.3%, respectively, P = 0.4897) (Figure 

5.1.c.). 

A.t end-point, splenocytes from APCP- (n = 9) and saline-injected (n = 8) mice were 

analysed by flow cytometry. APCP- and saline-injected mice demonstrated similar 

frequencies of human leukocytes (75.1 ± 9.4% and 90.2 ± 3.0%, respectively, P = 0.1691) 

(Figure 5.1.d.). One APCP-injected mouse revealed a human leukocyte frequency of only 

9.7% (Figure1d) but was included in subsequent analyses. APCP- and saline-injected mice 
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demonstrated similar frequencies of human T cells (92.5 ± 1.9% and 95.1 ± 1.6%, 

respectively, P = 0.3128) (Figure 5.1.e.), which comprised both hCD4+ T cells (58.3 ± 6.5% 

and 64.0 ± 7.0%, respectively, P = 0.5558) and hCD8+ T cells (29.6 ± 6.0% and 19.2 ± 3.3%, 

respectively, P = 0.1633) (Figure 5.1.f.). Both APCP- and saline-injected mice demonstrated 

greater frequencies of hCD4+ T cells than hCD8+ T cells (P = 0.0053 and P < 0.0001, 

respectively) (Figure 5.1.f.). 

To investigate whether APCP altered the frequency of CD39+/- and/or CD73+/- human T cells, 

these markers on hCD4+ and hCD8+ T cells from the spleens of humanised mice were 

analysed by flow cytometry. APCP-injected mice, compared to saline-injected mice, 

demonstrated a trend of increased hCD39+hCD73-hCD4+ T cells (10.2 ± 4.1% and 5.5 ± 

2.1%, respectively, P = 0.3441) and hCD39-hCD73+hCD4+ T cells (13.1 ± 5.5% and 3.7 ± 

0.9%, respectively, P = 0.1347), but a similar frequency of hCD39+hCD73+hCD4+ T cells 

(1.3 ± 0.4% and 0.8 ± 0.4%, respectively, P = 0.4247). Conversely, the frequency of 

hCD39-hCD73-hCD4+ T cells was significantly reduced in APCP-injected mice compared to 

saline-injected mice (75.4 ± 5.8% and 89.9 ± 2.4%, respectively, P = 0.0441) (Figure 5.1.g.). 

In contrast to hCD4+ T cells, APCP- and saline injected mice demonstrated similar 

frequencies of hCD39+hCD73-hCD8+ T cells (41.4 ± 3.0% and 36.4 ± 5.0%, respectively, P = 

0.3867), hCD39-hCD73+hCD8+ T cells (3.8 ± 1.0% and 2.8 ± 0.6, respectively, P = 0.4342), 

hCD39+hCD73+hCD8+ T cells (5.5 ± 1.6% and 4.1 ± 1.2, respectively, P = 0.5035) and 

hCD39-hCD73-hCD8+ T cells (49.3 ± 4.6% and 56.7 ± 5.8, respectively, P = 0.3247) (Figure 

5.1.h.). 

Previous studies have demonstrated that increased proportions of iNKT and Treg cells 

correlate to reduced GVHD severity in allogeneic mouse models of GVHD (Schneidawind et 

al., 2013), but the presence of human iNKT cells in humanised NSG mice is unknown. 

Therefore, the presence and frequency of human iNKT cells (hCD45+hCD3+hCD19-
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hVα24-Jα18+), as well as human Treg cells (hCD45+hCD3+hCD4+hCD25+hCD127lo), in the 

spleens of these mice was examined. APCP- and saline-injected mice demonstrated the 

presence and similar frequencies of iNKT cells (2.4 ± 1.0% and 1.4 ± 0.4%, respectively, P = 

0.3674) (Figure 5.1.i.). APCP- and saline-injected mice also demonstrated similar frequencies 

of Treg cells (1.4 ± 0.6 and 0.9 ± 0.2%, respectively, P = 0.4983) (Figure 5.1.j.). 

Previously, our group observed that the spleens of humanised mice at end-point do not 

contain human B cells (Chapter 3). Consistent with this observation, the remaining human 

leukocytes in the spleens of APCP- and saline-injected mice were negative for CD19, with 

similar frequencies of CD3-CD19- cells present in both groups of mice (7.5 ± 1.9% and 3.2 ± 

1.0%, respectively, P = 0.0703) (Figure 5.1.k.). Therefore, this remaining non-B/T cell 

population (hCD45+hCD3-hCD19-) was further analysed to determine if these cells were 

human monocytes (hCD14+hCD83-) or DCs (hCD14-hCD83+). APCP- and saline-injected 

mice demonstrated small but similar frequencies of human monocytes (0.03 ± 0.02% and 

0.001 ± 0.001%, respectively, P = 0.1804) (Figure 5.1.l.) and human DCs (0.4 ± 0.2% and 

0.3 ± 0.1%, respectively, P = 0.6066) (Figure 5.1.m.). 

5.5.2. APCP Augments Clinical and Histological GVHD in Humanised Mice 

To investigate whether APCP (CD39/CD73 blockade) impacted GVHD development, the 

above mice were monitored for disease development for up to 10 weeks. APCP-injected mice 

(n = 9) demonstrated significantly greater weight loss over the 10 weeks than saline-injected 

mice (n = 9) (P = 0.0350) (Figure 5.2.a.). APCP-mice demonstrated signs of GVHD 

(classified as a score clinical score ≥ 3) from 38 days onwards, while saline-injected mice 

demonstrated signs of GVHD from 45 days, however, clinical scores were similar over 10 

weeks (P = 0.1711) (Figure 5.2.b.). Moreover, APCP- and saline-injected mice exhibited 

identical median survival times (MST) (57 days and 57 days, respectively, P = 0.2634) and 

similar mortality over 10 weeks (100% and 78%, respectively, P = 0.2059) (Figure 5.2.c.). 
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GVHD affects the liver, gastrointestinal tract and skin in humans (Glucksberg et al., 1974), 

and in allogeneic (Schroeder and DiPersio, 2011) and humanised (King et al., 2009) mouse 

models. APCP-injected mice exhibited greater leukocyte infiltration and histological damage 

of the liver compared to saline-injected mice (Figure 5.2.d.). In contrast, the small intestines 

of APCP- and saline-injected mice exhibited similar amounts of leukocyte infiltration, crypt 

epithelial cell apoptosis and structural damage including rounding of villi (Figure 5.2.d.). 

Similarly, the skin of APCP- and saline-injected mice displayed similar amounts of leukocyte 

infiltration, with similar but minimal amounts of basal epithelial cell apoptosis and epidermal 

thickening (Figure 5.2.d.). 

5.5.3. APCP Blockade Increases Serum hIL-2 Concentrations in Humanised 

Mice 

An important part of GVHD development is the pro-inflammatory cytokine storm that drives 

immune cell proliferation and inflammatory damage (Ferrara et al., 2009). Therefore, to 

determine if APCP altered cytokine production in humanised mice, serum hIL-2, hIL-6, hIL-

10, hTNF-α and hIFN-γ concentrations from APCP- (n = 9) and saline-injected (n = 8) mice 

were analysed by a flow cytometric multiplex assay. APCP-injected mice demonstrated a 

significant increase in serum hIL-2 concentrations (3.2 ± 0.5 pg/mL) compared to saline-

injected mice (1.6 ± 0.3 pg/mL) (P = 0.0080) (Figure 5.2.e.). In contrast, APCP- and saline-

injected mice demonstrated similar serum concentrations of hIL-6 (3.9 ± 1.5 pg/mL, and 1.4 

± 0.7 pg/mL, respectively, P = 0.1743) (Figure 5.2.f.), hIL-10 (22.2 ± 4.1 pg/mL, and 19.1 ± 

3.1 pg/mL, respectively, P = 0.7621) (Figure 5.2.g.), and TNF-α (21.3 ± 6.5 pg/mL, and 16.6 

± 3.4 pg/mL, respectively, P = 0.7851) (Figure 5.2.h.). Serum hIFN-γ concentrations in both 

treatment groups exceeded the highest standard (>10,000 pg/mL) and thus could not be 

compared (data not shown). Attempts to reassess serum hIFN-γ concentrations by ELISA 

were unsuccessful (results not shown), possibly due to freeze-thawing of serum.  
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(a-m) The percentage of human leukocytes in (a-c) blood at 3 weeks post-hPBMC injection 
and (d-m) spleens at end-point from humanised NSG mice injected with saline (control) or 
the CD39/CD73 inhibitor APCP (50 mg/kg) were determined by flow cytometry. (a, d) 
hCD45+ leukocytes are expressed as a percentage of total (mCD45+ and hCD45+) leukocytes. 
(b, e) T cells (hCD3+hCD19-) and (c, k) non-B/T cells (hCD3-hCD19-) are expressed as a 
percentage of hCD45+ leukocytes. (f) hCD4+ and hCD8+ T cell subsets are expressed as a 
percentage of hCD3+ leukocytes. ** P < 0.005, *** P < 0.0001 compared to hCD8+ T cells. 
(g, h) The expression of hCD39 and hCD73 was analysed on (g) hCD4+ and (h) hCD8+ T cell 
subsets. * P < 0.05 compared to respective saline control. (i) iNKT cells (hVα24-Jα18+) are 
expressed as a percentage of hCD3+hCD19- T cells and (j) Treg cells (hCD25+hCD127lo) are 
expressed as a percentage of hCD3+ T cells. (l) monocytes (hCD14+CD83-) and (m) DCs 
(hCD14-CD83+) are expressed as a percentage of non-B/T cells. Data represents group means 
± SEM; symbols represent individual mice (saline n = 9, APCP n = 8-9).  

Figure 5.1. APCP reduces human CD4+CD39-CD73- cells in a humanised mouse model of GVHD  
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5.5.4. Caffeine Does Not Impact hPBMC Engraftment in NSG Mice 

The above data suggests that decreased adenosine and/or increased ATP production due to 

APCP-mediated blockade of CD39/CD73 worsens GVHD in humanised NSG mice. Thus, a 

role for ARs using the broad-spectrum AR antagonist, caffeine, in this process was examined 

using the same regime efficacious in an allogeneic mouse model of GVHD (Tsukamoto et al., 

2012). First, to determine if caffeine altered hPBMC engraftment, 3 weeks post-hPBMC 

injection blood cells from caffeine- (n = 13) and saline-injected (n = 15) mice were analysed 

by flow cytometry. Caffeine- and saline-injected mice demonstrated similar frequencies of 

human leukocytes (23.5 ± 3.5% and 28.5 ± 4.7%, respectively, P = 0.4135) (Figure 5.3.a.), 

which comprised T cells (92.5 ± 1.1% and 94.2 ± 0.7%, respectively, P = 0.1897) (Figure 

5.3.b.), and non-B/T cells (7.5 ± 1.1% and 5.8 ± 0.7%, respectively, P = 0.1897) (Figure 

5.3.c.).  

At end-point, splenocytes from caffeine- (n = 13) and saline-injected (n = 14) mice were 

analysed by flow cytometry. Caffeine- and saline-injected mice demonstrated similar 

frequencies of human leukocytes (72.2 ± 6.2% and 75.6 ± 3.8%, respectively, P = 0.6346) 

(Figure 5.3.d.). One caffeine-injected mouse revealed a human leukocyte frequency of only 

11.2% (Figure 5.3.d.) but was included in subsequent analyses. Caffeine- and saline-injected 

mice demonstrated similar frequencies of human T cells (96.1 ± 1.0% and 93.7 ± 1.9%, 

respectively, P = 0.2934) (Figure 5.3.e.), which comprised hCD4+ T cells (51.7 ± 4.4% and 

52.7 ± 3.4%, respectively, P = 0.8658) and hCD8+ T cells (13.5 ± 2.3% and 18.5 ± 4.0%, 

respectively, P = 0.3011). Both caffeine- and saline-injected mice demonstrated greater 

frequencies of hCD4+ than hCD8+ T cells (P < 0.0001 and P < 0.0001, respectively) (Figure 

5.3.f.). 
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(a-i) Humanised NSG mice injected with saline (control) or the CD39/CD73 inhibitor APCP (50 
mg/kg) were monitored for (a) weight loss, (b) clinical score and (c) survival over 10 weeks. * P < 
0.05 compared to saline-injected mice. Data represents (a, b) group means ± SEM or (c) percent 
survival (saline n = 9, APCP n = 9). (d) Tissue sections (liver, small intestine, and skin) were stained 
with haematoxylin and eosin and images were captured by microscopy, with each image 
representative of eight mice per group; bar represents 100 μm. (e-h) Concentrations of serum human 
(e) IL-2, (f) IL-6, (g) IL-10 and (h) TNF-α were analysed using a flow cytometric multiplex assay. * P 
< 0.05 compared to respective saline control. Data represents group means ± SEM (saline n = 8, 
APCP n = 9).  

 

Caffeine- and saline injected mice demonstrated similar frequencies of 

hCD39+hCD73-hCD4+ T cells (14.2 ± 4.6% and 11.0 ± 3.6%, respectively, P = 0.5926), 

Figure 5.2 CD73 blockade augments disease in a humanised mouse model of GVHD. 

APCP 
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hCD39-hCD73+hCD4+ T cells (3.2 ± 1.0% and 5.3 ± 1.9, respectively, P = 0.3572), 

hCD39+hCD73+hCD4+ T cells (0.8 ± 0.2% and 0.7 ± 0.3, respectively, P = 0.9430) and 

hCD39-hCD73-hCD4+ T cells (81.8 ± 4.4% and 83.0 ± 3.5, respectively, P = 0.8425) (Figure 

5.3.g.). Caffeine- and saline-injected mice also demonstrated similar frequencies of 

hCD39+hCD73-hCD8+ T cells (33.3 ± 6.2% and 39.5 ± 5.4%, respectively, P = 0.4544), 

hCD39-hCD73+hCD8+ T cells (3.3 ± 0.7% and 5.9 ± 2.8%, respectively, P = 0.3922), 

hCD39+hCD73+hCD8+ T cells (4.9 ± 1.4% and 5.2 ± 2.0%, respectively, P = 0.9055) and 

hCD39-hCD73-hCD8+ T cells (57.4 ± 6.9% and 50.6 ± 6.0%, respectively, P = 0.4627) 

(Figure 5.3.h.).  

Caffeine- and saline-injected mice also demonstrated similar frequencies of iNKT cells (3.1 ± 

0.9% and 1.6 ± 0.3%, respectively, P = 0.1088) (Figure 5.3.i.) and Treg cells (0.8 ± 0.1% and 

0.9 ± 0.2%, respectively, P = 0.8964) (Figure 5.3.j.). Caffeine- and saline-injected mice 

demonstrated similar frequencies of non-B/T cells (4.1 ± 1.1% and 5.8 ± 1.9%, respectively, 

P = 0.4381) (Figure 5.3.k.), which included similar frequencies of monocytes (0.2 ± 0.1%, n 

= 11 and 0.3 ± 0.1%, n = 10 respectively, P = 0.5873) (Figure3l) and DCs (0.6 ± 0.2%, n = 11 

and 0.4 ± 0.2%, n = 10 respectively, P = 0.7984) (Figure 5.3.m.). 

5.5.5. Caffeine Does Not Impact Clinical or Histological GVHD in Humanised 

Mice 

To determine if caffeine (AR blockade) impacted GVHD development, the above mice were 

monitored for disease development for up to 10 weeks. Caffeine- (n = 13) and saline-injected 

(n = 15) mice demonstrated similar weight loss (P = 0.7574) (Figure 5.4.a.) and clinical 

scores (P = 0.0846) (Figure 5.4.b.) over 10 weeks. Moreover, caffeine- and saline-injected 

mice exhibited similar MSTs (47 days and 45 days, respectively, P = 0.8741) and mortality 

over 10 weeks (87% and 87%, respectively, P = 1.000) (Figure 5.4.c.).  
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Caffeine- and saline-injected mice demonstrated similar amounts of leukocyte infiltration and 

histological damage of the liver, small intestine and skin (Figure 5.4.d.). Moreover, the small 

intestines from mice from either group exhibited similar amounts of structural damage 

including enterocyte loss, crypt epithelial cell apoptosis and rounding of villi (Figure 5.4.d.). 

Similarly, skin from both caffeine- and saline-injected mice displayed mild basal epithelial 

cell apoptosis and epidermal thickening (Figure 5.4.d.). 

5.5.6. Caffeine Does Not Impact Serum Cytokine Concentrations in a 

Humanised Mouse Model of GVHD 

Finally, to determine if caffeine altered cytokine production in humanised mice, serum hIL-2, 

hIL-6, hIL-10, hIFN-γ and hTNF-α concentrations were analysed as above. Caffeine- (n = 

12) and saline-injected (n = 11) mice demonstrated similar concentrations of serum hIL-2 

(1.5 ± 0.4 pg/mL and 1.0 ± 0.3 pg/mL, respectively, P = 0.7556), hIL-6 (2.9 ± 1.3 pg/mL and 

3.7 ± 2.8 pg/mL, respectively, P = 0.6577), and hIL-10 (23.0 ± 2.6 pg/mL and 26.8 ± 6.4 

pg/mL, respectively, P = 0.8594). There was a trend of increased hTNF-α concentration in 

caffeine-injected mice, which approached but did not achieve statistical significance (18.6 ± 

3.2 pg/mL and 13.7 ± 3.3 pg/mL, respectively, P = 0.0852). Serum hIFN-γ concentrations in 

both treatment groups exceeded the highest standard (>10,000 pg/mL) and thus could not be 

compared (data not shown). Attempts to reassess serum hIFN-γ concentrations by ELISA 

were unsuccessful (results not shown), possibly due to freeze-thawing of serum.  
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of GVHD. (a-m) The percentage of human leukocytes in (a-c) blood at 3 weeks post-hPBMC 
injection and (d-m) spleens at end-point from humanised NSG mice injected with saline (control) or 
the AR antagonist caffeine (10 mg/kg) were determined by flow cytometry. (a, d) hCD45+ leukocytes 
are expressed as a percentage of total (mCD45+ and hCD45+) leukocytes. (b, e) T cells 
(hCD3+hCD19-) and (c, k) non-B/T cells (hCD3-hCD19-) are expressed as a percentage of hCD45+ 
leukocytes. (f) hCD4+ and hCD8+ T cell subsets are expressed as a percentage of hCD3+ leukocytes. 
*** P < 0.0001 compared to hCD8+ T cells. (g, h) The expression of hCD39 and hCD73 was 
analysed on (g) hCD4+ and (h) hCD8+ T cell subsets. (i) iNKT cells (hVα24-Jα18+) are expressed as a 
percentage of hCD3+ hCD19- T cells and (j) Treg cells (hCD25+hCD127lo) are expressed as a 
percentage of hCD3+ T cells. (l) monocytes (hCD14+CD83-) and (m) DCs (hCD14-CD83+) are 
expressed as a percentage of non-B/T cells. Data represents group means ± SEM; symbols represent 
individual mice (saline n = 15, caffeine n = 13).   
 

Figure 5.3. Caffeine does not impact human leukocyte engraftment in a humanised mouse model  
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(a-i) Humanised NSG mice injected with saline (control) or the AR antagonist caffeine (10 mg/kg) 
were monitored for (a) weight loss, (b) clinical score, and (c) survival over 10 weeks. Data represents 
(a, b) group means ± SEM or (c) percent survival (saline n = 9, caffeine n = 9). (d) Tissue sections 
(liver, small intestine, and skin) were stained with haematoxylin and eosin and images were captured 
by microscopy, with each image representative of 13 mice per group; bar represents 100 μm. (e-h) 
Concentrations of serum human (e) IL-2, (f) IL-6, (g) IL-10 and (h) TNF-α were analysed using a 
flow cytometric multiplex assay. Data represents group means ± SEM (saline n = 15, caffeine n = 13). 

Figure 5.4. Caffeine does not impact disease in a humanised mouse model of GVHD. 
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5.6. Discussion 
Accumulation of extracellular adenosine resulting from the CD39/CD73 pathway and 

subsequent activation of ARs is important in limiting disease in allogeneic mouse models of 

GVHD (Tsukamoto et al., 2012, Wang et al., 2013). However, the role of this signalling axis 

in humanised mouse models of GVHD remained unknown. The current study demonstrated 

that CD39/CD73 blockade with APCP increases weight loss, liver GVHD and serum hIL-2 

concentrations, and decreases the frequency of hCD39-hCD73-hCD4+ T cells in humanised 

mice. In contrast, blockade of ARs with caffeine did not impact clinical or histological 

GVHD or associated leukocytes or inflammatory markers. It is unlikely that caffeine failed to 

block ARs in the humanised mice, as this same caffeine regime augmented GVHD in 

allogeneic mice (Tsukamoto et al., 2012) and caffeine impairs both murine and human ARs 

with similar efficacy (El Yacoubi et al., 2000, Abo-Salem et al., 2004). Thus, the results of 

this study do not support a role for AR activation in limiting GVHD in humanised mice. 

Rather, this study supports a role for extracellular ATP in augmenting GVHD in this model. 

Blockade of CD39 and/or CD73 with APCP maintains or increases extracellular ATP 

concentrations (Moody et al., 1984, Covarrubias et al., 2016). This ATP in turn may 

subsequently act on P2X7 and/or P2Y2 to promote GVHD in humanised mice. These P2 

receptors are involved in GVHD progression in humanised (Chapter 3) and/or allogeneic 

models (Wilhelm et al., 2010, Fowler et al., 2014, Zhong et al., 2016, Klambt et al., 2015) of 

this disease, although the role of P2Y2 in the former remains to be elucidated. 

The current study demonstrates that CD39/CD73 blockade with APCP augments liver GVHD 

in humanised mice. This finding is similar to the increased liver GVHD in CD73 deficient 

mice compared to wild-type mice in allogenic GVHD (Tsukamoto et al., 2012, Wang et al., 

2013). The inability of AR blockade with caffeine to augment liver GVHD in humanised 

mice supports the concept that extracellular ATP rather than adenosine contributes to liver 
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GVHD in humanised mice. In support of this, ATP activation of P2X7 worsens liver GVHD 

in an allogeneic mouse model (Wilhelm et al., 2010), and pharmacological blockade of P2X7 

reduces liver GVHD in both allogeneic (Wilhelm et al., 2010, Zhong et al., 2016) and 

humanised (Chapter 3) mouse models of this disease.  

The current study also demonstrated the presence of serum hIL-2, hIL-6, hIL-10, hTNF-α and 

hIFN-γ in humanised mice with GVHD, and implicates a pro-inflammatory role for hIL-2 in 

GVHD development in this model. Consistent with this, administration of low dose IL-2 in 

allogeneic and humanised mouse models of GVHD results in the activation of effector T cells 

(Abraham et al., 2017, Pérol et al., 2014), which circumvent any potential clinical benefits 

imparted by the expanded Treg cell population in these mice (Pérol et al., 2014). Notably, co-

administration of IL-10 with IL-2 can limit the expansion of effector T cells and increase 

survival in humanised mice with GVHD (Abraham et al., 2017). However in the current 

study, hIL-10 concentrations where similar in APCP- and saline-injected mice suggesting that 

any potential effects of hIL-10 on hIL-2 was the same between treatments. Finally, in the 

current study, serum concentrations of hIL-2, hIL-6, hIL-10 and hTNF-α were in the pg/mL 

range, which contrasted the 1000-fold greater amounts of serum hIFN-γ. Thus, this suggests 

hIFN-γ may have a major role in disease development in this humanised mouse model of 

GVHD. Consistent with this, P2X7 blockade in this model reduced histological GVHD, 

which coincided with reduced concentrations of serum hIFN-γ (Chapter 3), but the impact of 

P2X7 blockade on serum hIL-2 remains to be elucidated.  

The current study demonstrated that APCP but not caffeine decreases human 

CD39-CD73-CD4+, but not CD39-CD73-CD8+ T cells. The reduced frequency of human 

CD39-CD73-CD4+ T cells due to APCP treatment may be due a compensatory mechanism 

that involves upregulating CD39 and/or CD73 to increase ATP degradation and promote 

adenosine generation. This is supported by the trend of increased frequencies of human 
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CD39+CD73-CD4+ and CD39-CD73+CD4+ T cells following APCP treatment. However, 

these increases were not statistically significant and there was no increased trend in human 

CD39+CD73+CD4+ T cells in these mice. Thus, the reason for the reduced frequency of 

human CD39-CD73-CD4+ T cells following APCP treatment requires further elucidation. 

The current study confirms that NSG mice injected with hPBMCs engraft hCD4+ and hCD8+ 

T cells as well as Tregs, but shows for the first time that humanised NSG mice also engraft 

human iNKT cells. This engraftment of human iNKT cells suggests that this model could be 

used to study these cells in vivo and allow manipulation of these cell types to alter disease 

outcomes. In allogeneic mouse models of GVHD, both host (Zeng et al., 1999) and donor 

(Kim et al., 2007) iNKT cells can attenuate disease, whilst adoptive transfer of these cells can 

prevent GVHD in such models (Schneidawind et al., 2015). The current study also 

demonstrates that humanised NSG mice engraft human monocytes and DCs. Previous studies 

have shown that NSG mice engraft human monocytes and DCs when injected with human 

cord blood (Audigé et al., 2017), and engraft human monocytes when injected with hPBMCs 

(Palamides et al., 2016, Jodeleit et al., 2017). Similarly, SCID mice injected with hPBMCs 

engraft human DCs (Seldon et al., 2015), but the current study is the first to demonstrate DC 

engraftment in NSG mice injected with hPBMCs. Human T cells recognise murine major 

histocompatibility complex I and II molecules in NSG mice to cause GVHD (King et al., 

2009), but the identity of the APCs involved remains to be determined. However it is known 

that both host and donor APCs are involved in GVHD development in allogeneic mouse 

models of this disease (Shlomchik et al., 1999, Markey et al., 2009). The engraftment of 

human monocytes and DCs in NSG mice suggests that human T cells may at least in part be 

activated by human antigen presenting cells in this model. 

Although these results demonstrate that AR blockade with caffeine has no impact on disease, 

caffeine is a broad-spectrum adenosine receptor antagonist which may confound 
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interpretation of its effects in the current study. Furthermore, caffeine is an antagonist of 

phosphodiesterases (Choi et al., 1988) and γ-aminobutyric acid receptors (Nistri and Berti, 

1984, Vigh and Lasater, 2003), and can promote calcium release from intracellular stores 

(Nistri and Berti, 1984, Vigh and Lasater, 2003) further confounding interpretation of current 

findings. Therefore, the future use of more selective AR antagonists such as SCH 52861, 

which worsened GVHD in allogeneic mouse models (Lappas et al., 2010), is warranted in 

humanised mouse models of GVHD to further explore a role for ARs in this model. 

Alternatively, deletion of specific ARs (or CD39 or CD73) in NSG mice may provide further 

insight into ATP and adenosine signalling pathways in the development of GVHD in 

humanised mice. This was not performed in this study due to issues with dissolving SCH 

58261, and the ethically unnecessary use of mice. 

In conclusion, CD39/CD73 blockade with APCP, but not AR blockade with caffeine, 

augmented GVHD in humanised mice. These results support the known roles of extracellular 

ATP in promoting GVHD but do not support evidence that extracellular adenosine can limit 

GVHD in this humanised model.  
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6.2. Abstract 
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative method for blood 

cancers and other blood disorders, but is limited by the development of graft-versus-host 

disease (GVHD). GVHD results in inflammatory damage to the host liver, gastrointestinal 

tract and skin, resulting in high rates of morbidity and mortality in HSCT recipients. 

Activation of the A2A receptor has been previously demonstrated to reduce disease in 

allogeneic mouse models of GVHD using CGS 21680. This study aimed to investigate the 

effect of A2A activation on disease development in a humanised mouse model of GVHD. 

Immunodeficient non-obese diabetic-severe combined immunodeficiency-interleukin (IL)-2 

receptor γnull (NSG) mice injected with human (h) peripheral blood mononuclear cells 

(hPBMCs), were treated with either the A2A agonist CGS 21680 or vehicle control. Contrary 

to the beneficial effect of A2A activation in allogeneic mouse models, CGS 21680 increased 

weight loss, and failed to reduce the clinical score or increase survival in this humanised 

mouse model of GVHD. Moreover, CGS 21680 reduced T regulatory cells and increased 

serum human IL-6 concentrations. Conversely, CGS 21680 reduced serum human tumour 

necrosis factor (TNF)-α concentrations and leukocyte infiltration into the liver, indicating that 

A2A activation can, in part, reduce molecular and histological GVHD in this model. Notably, 

CGS 21680 also prevented healthy weight gain in NSG mice not engrafted with hPBMCs 

suggesting that this compound may be suppressing appetite or metabolism. Therefore, the 

potential benefits of CGS 21680 in reducing GVHD in HSCT recipients may be limited and 

confounded by adverse impacts on weight, decreased T regulatory cell frequency and 

increased IL-6 production. 
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6.3. Introduction 
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative method for 

numerous haematological malignancies and other blood disorders; however, HSCT is limited 

by the development of graft-versus-host disease (GVHD) (Jaglowski and Devine, 2014). 

GVHD develops in up to 60% of HSCT recipients (Jagasia et al., 2012), due to donor T cells 

recognising ‘foreign’ host cells (Billingham, 1965). GVHD begins when damage caused by 

the conditioning regime or the underlying disease promotes the release of inflammatory 

cytokines such as tumour necrosis factor (TNF)-α and interleukin (IL)-6. Subsequently, 

activation of T cells by dendritic cells (DCs) results in the further release of TNF-α as well as 

interferon (IFN)-γ, IL-2 and IL-6 to promote inflammation, and subsequent activation of 

CD8+ T cells to exacerbate this inflammation. Conversely, T regulatory (Treg) cells and 

invariant natural killer T (iNKT) cells can reduce pro-inflammatory effects in GVHD to limit 

disease development or progression (Schneidawind et al., 2013).   

Adenosine receptors (A1, A2A, A2B and A3) are cell-surface G-protein coupled receptors 

activated by extracellular adenosine (Fredholm et al., 2011a). Extracellular adenosine is often 

produced as a result of ATP hydrolysis mediated by the sequential action of ecto-nucleoside 

triphosphate diphosphohydrolase-1 (CD39), and ecto-5’-nucleotidase (CD73) (Ferrero et al., 

2018, Apostolova and Zeiser, 2016a). The A2A receptor is expressed on numerous immune 

cell subsets including DCs and T cells (Burnstock and Boeynaems, 2014). Notably, 

CD39/CD73-mediated production of adenosine and subsequent activation of A2A is an 

important anti-inflammatory mechanism (Deaglio et al., 2007). In allogeneic mouse models 

of transplantation, adenosine production by the CD39/CD73 pathway and subsequent 

activation of adenosine receptors prevents tissue damage and reduces graft rejection (Vergani 

et al., 2014). In allogeneic mouse models of GVHD, genetic deficiency or pharmacological 

blockade of CD73 with αβ-methylene ADP (APCP) (Tsukamoto et al., 2012), which results 
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in reduced extracellular adenosine, worsens disease. Similarly, genetic deficiency 

(Tsukamoto et al., 2012, Wang et al., 2013) or pharmacological blockade of A2A with 

SCH58261 (Wang et al., 2013) also worsens GVHD severity in these models. Conversely, 

activation of A2A with ATL-146e can ameliorate GVHD in allogeneic mouse models (Lappas 

et al., 2010, Han et al., 2013). However, the action of A2A activation in humanised mouse 

models or HSCT patients remains to be explored. 

Allogeneic mouse models are often used to investigate potential therapeutics for GVHD, yet 

therapies investigated in these models often do not translate to the clinic. This lack of 

translation is possibly due to species differences. In an attempt to address this, preclinical 

“humanised” mouse models have been developed (Shultz et al., 2007). A commonly used 

humanised mouse model involves injection of human peripheral blood mononuclear cells 

(hPBMCs) into immunodeficient non-obese diabetic severe-combined immunodeficiency-IL-

2 receptor γnull (NSG) mice. Due to defective T and B cells, and a lack of natural killer (NK) 

cells, these mice readily engraft hPBMCs (King et al., 2008), and subsequently develop 

GVHD due to the ability of human T cells to recognise the major histocompatibility complex 

(MHC) I and II of NSG mice (King et al., 2009, Brehm et al., 2018). As such, humanised 

NSG mice have been widely used as a model of GVHD (Pino et al., 2010, Hippen et al., 

2011, Ali et al., 2012, Bruck et al., 2013, Søndergaard et al., 2013, Abraham et al., 2015, 

Gregoire-Gauthier et al., 2015, Hilger et al., 2016, Ehx et al., 2017). 

Using the A2A agonist CGS 21680 (Klotz et al., 1998), this study aimed to investigate the 

effect of A2A activation on GVHD development in a humanised mouse model. CGS 21680 

did not impact clinical score or survival of mice. However, CGS 21680 reduced leukocyte 

infiltration into livers, and reduced serum hTNF-α concentrations indicative of reduced 

GVHD severity. Conversely, CGS 21680 worsened weight loss, reduced Treg cell frequency 

and increased serum hIL-6 concentrations indicating worsened GVHD. Notably, CGS 21680 
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also prevented weight gain in NSG mice not engrafted with hPBMCs. This suggests that 

appetite or metabolism may be negatively impacted by CGS 21680. Therefore, the adverse 

impact on weight, Treg cells and IL-6 caused by CGS 21680 may confound the potential 

benefits of this agonist in reducing GVHD in HSCT recipients. 

 

6.4. Materials and Methods 

6.4.1. Humanised Mouse Model of GVHD 

Experiments involving human blood and mice were approved by the respective Human and 

Animal Ethics Committees of the University of Wollongong (Wollongong, Australia). A 

humanised mouse model of GVHD was used as described (Chapter 3). Briefly, female NSG 

mice aged 6-8 weeks (Australian BioResources, Moss Vale, Australia) were injected 

intraperitoneally (i.p.) daily (days -2 to day 11) with saline/0.2% DMSO (Sigma-Aldrich, St 

Louis, MO, USA) (vehicle) or vehicle containing CGS 21680 (Tocris Bioscience, Bristol, 

UK) (0.1 mg/kg). hPBMCs, isolated by density centrifugation using Ficoll-Paque PLUS (GE 

Healthcare; Uppsala, Sweden) and resuspended in Dulbecco’s phosphate-buffer saline 

(ThermoFisher, Waltham, MA, USA), were injected i.p. (day 0) (10 x 106 hPBMCs/mouse). 

At 3 weeks post-hPBMC injection, mice were checked for engraftment by 

immunophenotyping of tail vein blood. Mice were monitored for signs of GVHD using a 

scoring system, giving a total clinical score out of 10, as described (Chapter 3). Mice were 

euthanised at 10 weeks post-injection of hPBMCs, or earlier if exhibiting a clinical score of ≥ 

8 or a weight loss of ≥ 10%, according to the approved animal ethics protocol.  

6.4.2. Immunophenotyping by Flow Cytometry 

Tail vein blood (week 3) and spleen cells (end-point) were obtained from mice and lysed with 

ammonium chloride potassium buffer and immunophenotyped as described (Chapter 3) using 

the antibodies listed in Table 1. Data was collected using a BD Fortessa-X20 Flow Cytometer 
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(using band pass filters 450/50 for BV421, 710/50 for BV711, 525/50 for FITC, 586/15 for 

PE, 695/40 for PerCP-Cy5.5, 780/60 for PE-Cy7 and 670/30 for APCy). The relative 

percentages of cells were analysed using FlowJo software v8.7.1 (TreeStar Inc.; Ashland, 

OR, USA).  

Table 6.1. Monoclonal antibodies used for flow cytometry. 

Target Fluorochrome Clone* 
CD3 BV711 UCHT1 
CD4 PerCP-Cy5.5 L200 
CD8 FITC RPA-T8 
CD14 BV421 MϕP9 
CD19 APCy HIB19 
CD25 PE M-A251 
CD39 APCy TU66 
CD45 FITC HI30 
CD45 PerCP-Cy5.5 30-F11 
CD73 PE-Cy7 AD2 
CD83 PE HB15e 
CD127 BV421 HIL-7R-M21 
Vα24-Jα14 TCR PE-Cy7 6B11 
*All antibodies were mouse anti-human except clone 30-F11 (rat anti-mouse); all antibodies were 
from BD Biosciences except clone 6B11 (BioLegend). Abbreviations: APCy, allophycocyanin; BV, 
brilliant violet; Cy, cyanin; FITC, fluorescein isothiocyanate; PE, phycoerythrin; PerCP, peridinin 
chlorophyll protein; TCR, T cell receptor. 

 

6.4.3. Histological Analysis 

Formalin-fixed tissue sections (5 μm) were stained with haematoxylin and eosin (POCD; 

Artarmon, Australia), and histology assessed, as described (Chapter 3).  

6.4.4. Cytokine Analysis by a Flow Cytometric Multiplex Assay 

Serum was obtained from mice at end-point as described (Chapter 3) and cytokine 

concentrations were measured using a Th1 LEGENDPlex kit (BioLegend, San Diego, CA, 

USA) as per the manufacturer’s instructions. 
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6.4.5. Statistical Analysis 

Data is given as mean ± standard error of the mean (SEM). Statistical differences were 

calculated using Student’s t-test for single comparisons or one-way analysis of variance 

(ANOVA) with Tukey’s post-hoc test for multiple comparisons. Weight and clinical score 

were analysed using a repeated measures two-way ANOVA. Survival (median survival time; 

MST) was compared using the log-rank (Mantel-Cox) test. Proportion of engraftment and 

mortality were compared using Fisher’s exact test. All statistical analyses and graphs were 

generated using GraphPad Prism 5 for PC (GraphPad Software, La Jolla, CA, USA). P < 0.05 

was considered significant for all tests. 

 

6.5. Results 

6.5.1. CGS 21680 Does Not Impact Initial hPBMC Engraftment in NSG Mice 

NSG mice, injected with hPBMCs and either control vehicle (n = 25) or the A2A agonist CGS 

21680 (Klotz et al., 1998) (n = 25) daily (days -2 to 11), were monitored (from day 0) for up 

to 10 weeks. To determine whether CGS 21680 affected initial hPBMC engraftment, blood 

was collected 3 weeks post-hPBMC injection and cells immunophenotyped by flow 

cytometry. Three mice from each group did not demonstrate human leukocytes 

(hCD45+mCD45-) in their blood at 3 weeks (results not shown). In the remaining mice, 

human leukocytes were observed in the blood with frequency of these cells calculated as a 

percentage of total leukocytes [hCD45+mCD45-/(hCD45+mCD45- + hCD45-mCD45+)]. CGS 

21680- and vehicle-injected mice demonstrated similar frequencies of human leukocytes 

(21.8 ± 2.8% and 22.8 ± 3.2%, respectively, P = 0.8221) (Fig 1a). The proportion of human 

leukocyte engraftment was the same in CGS 21680- and vehicle-injected mice (both 90%, P 

= 1.000). The majority of these human leukocytes were T cells (95.7 ± 0.8% and 97.3 ± 
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0.6%, respectively, P = 0.1086) (Fig 1b). The remaining cells were non-B/T cells (3.8 ± 0.9 

% and 3.4 ± 0.6%, respectively, P = 0.7502) (Fig 1c).   

6.5.2. CGS 21680 Reduces Human Treg Cells in Humanised NSG Mice 

To determine if CGS 21680 impacted hPBMC engraftment at end-point, splenocytes from 

CGS 21680- (n = 20) and vehicle-injected mice (n = 20) were analysed by flow cytometry. 

Human leukocytes were absent in the spleens of the same three mice from each group that 

failed to show hPBMC engraftment at 3 weeks (results not shown). Frequencies of human 

leukocytes in mice engrafted at three weeks were similar in CGS 21680- and vehicle-injected 

mice (70.5 ± 3.2% and 65.1 ± 6.0%, respectively, P = 0.4348) at end-point (Figure 6.1.d.).  

Similar to blood at 3 weeks post-hPBMC injection, the majority of engrafted human 

leukocytes in both groups of mice were T cells, which did not differ between CGS 21680- 

(93.4 ± 1.8%) and vehicle-injected mice (93.6 ± 1.5%) (P = 0.9546) (Figure 6.1.e.). Further 

analysis of human T cells demonstrated that CGS 21680- and vehicle-injected mice 

demonstrated similar engraftment of hCD4+ T cells (67.2 ± 3.0% and 58.3 ± 3.7%, 

respectively, P = 0.0713) and hCD8+ T cells (18.0 ± 2.3% and 24.4 ± 3.3%, respectively, P = 

0.1260). Both CGS 21680- and vehicle-injected mice demonstrated greater engraftment of 

hCD4+ than hCD8+ cells (P < 0.0001 and P < 0.0001, respectively) (Figure 6.1.f.).  

To investigate whether CGS 21680 effected CD39 and/or CD73 on human T cells, these 

ecto-nucleotidases on hCD4+ and hCD8+ T cell subsets from the spleens of mice were 

examined. CGS 21680-injected demonstrated a trend of increased hCD39+hCD73-hCD4+ T 

cells compared to vehicle-injected mice (15.6 ± 3.0% and 9.1 ± 2.0%, respectively, P = 

0.0796). Conversely, CGS 21680-injected mice demonstrated significantly reduced 

frequencies of hCD39-hCD73+hCD4+ T cells (2.5 ± 0.7% and 8.9 ± 2.6, respectively, P = 

0.0227), and a reduced trend of hCD39+hCD73+hCD4+ T cells (1.3 ± 0.3% and 3.1 ± 1.1%, 
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respectively, P = 0.1137) compared to vehicle-injected mice. However, CGS 21680- and 

vehicle-injected mice demonstrated similar frequencies of hCD39-hCD73-hCD4+ T cells 

(80.6 ± 3.0% and 78.8 ± 4.1%, respectively, P = 0.7358) (Figure 6.1.g.). CGS 21680- and 

vehicle-injected mice demonstrated similar frequencies of hCD39+hCD73-hCD8+ T cells 

(40.6 ± 5.9% and 39.7 ± 5.0%, respectively, P = 0.9036), hCD39-hCD73+hCD8+ T cells (3.0 

± 1.0% and 4.2 ± 1.2%, respectively, P = 0.4508), hCD39+hCD73+hCD8+ T cells (4.0 ± 1.1% 

and 7.3 ± 2.2%, respectively, P = 0.1877) and hCD39-hCD73-hCD8+ T cells (52.3 ± 4.7% 

and 51.4 ± 5.9%, respectively, P = 0.9137) (Figure 6.1.h.).  

In allogeneic mouse models increased frequencies of iNKT and Treg cells correlates with 

reduced GVHD (Schneidawind et al., 2013). Therefore, the frequency of human iNKT cells 

(hCD45+hCD3+hCD19-hVα24-Jα18+) and human Treg cells 

(hCD45+hCD3+hCD4+hCD25+hCD127lo) in spleens from mice were examined. CGS 21680-

injected mice, compared to vehicle-injected mice, demonstrated a reduced trend of iNKT 

cells (2.7 ± 0.6% and 4.7 ± 1.1%, respectively, P = 0.1223) (Figure 6.1.i.) and significantly 

reduced Treg cells (0.4 ± 0.1% and 0.9 ± 0.2%, respectively, P = 0.0130) (Figure 6.1.j.).  

Our group has previously shown that at end-point the spleens of humanised mice do not 

contain human B cells (Chapter 3). Similarly, in the current study the remaining human 

leukocytes in the spleens of mice were negative for CD19 (results not shown). CGS 21680- 

and vehicle-injected mice demonstrated small but similar frequencies of CD3-CD19- cells 

present in both groups of mice (3.2 ± 0.8% and 4.7 ± 0.8%, respectively, P = 0.1783) 

(Figure1k). To determine if human monocytes (hCD14+hCD83-) or DCs (hCD14-hCD83+) 

were present, the remaining non-B/T cell population (hCD45+hCD3-hCD19-) was analysed. 

CGS 21680- and vehicle-injected mice demonstrated similar but low frequencies of 

monocytes (0.4 ± 0.2% and 0.6 ± 0.2%, respectively, P = 0.6127) (Figure1l) and DCs (0.2 ± 

0.1%, and 0.7 ± 0.3%, respectively, P = 0.1160) (Figure1m). 
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(a - m) NSG mice were injected daily with either saline/0.2% DMSO (vehicle) or vehicle containing 
CGS 21680 (0.1 mg/kg) (day -2 to day 11), and with 10 x 106 hPBMCs (day 0). The percentages of 
human (h) leukocytes and subsets in (a-c) blood at 3 weeks post-hPBMC injection and (d-m) spleens 
at end-point were determined by flow cytometry. (a, d) Human leukocytes (hCD45+mCD45-) are 
expressed as a percentage of total mCD45+ and hCD45+ leukocytes. Three mice from each group did 
not engraft hCD45+ leukocytes (not shown). (b, e) hCD3+hCD19- cells and (c, k) hCD3-hCD19- cells 
are expressed as a percentage of total hCD45+ leukocytes. (f) hCD4+ and hCD8+ T cell subsets are 
expressed as a percentage of total hCD3+ leukocytes. ** P < 0.005, *** P < 0.0001 compared to 
hCD8+ T cells. (g-h) hCD39 and hCD73 expression was analysed on (g) hCD4+ and (h) hCD8+ T cell 
subsets. * P < 0.05 compared to vehicle. (i) Invariant natural killer T (iNKT) cells 
(hCD45+hCD3+hCD19-hVα24-Jα18+) are expressed as a percentage of hCD3+hCD19- T cells and (j) T 
regulatory (Treg) cells (hCD45+hCD3+hCD4+hCD25+hCD127lo) are expressed as a percentage of 
hCD3+ T cells. * P < 0.05 compared to vehicle. (l) Monocytes (hCD14+hCD83-) and (m) dendritic 
cells (DCs) (hCD14-hCD83+) are expressed as a percentage of hCD45+hCD3-hCD19- cells. Data 
represents group means ± SEM (vehicle n = 20-22, CGS 21680 n = 20-22); symbols represent 
individual mice.  

 

6.5.3. CGS 21680 Worsens Weight Loss in Humanised NSG Mice 

To investigate whether CGS 21680 impacts GVHD, the above mice were monitored for 

weight loss and other signs of GVHD for up to 10 weeks. One engrafted saline-injected 

mouse died unexpectedly overnight from unknown causes and was excluded from the 

following analyses. In those mice which had engrafted hPBMCs, CGS 21680-injected mice 

(n = 22) demonstrated significantly greater weight loss over the 10 weeks than vehicle-

injected mice (n = 21) (P = 0.0020) (Figure 6.2.a.). However, both CGS 21680- and vehicle-

injected mice demonstrated signs of GVHD (classified as a score clinical score > 3) from 35 

days onwards with similar scores (P = 0.8008) (Figure 6.2.b.), survival (MST; 41 days, and 

43 days, respectively, P = 0.6730) and mortality rates (90% and 82%, respectively, P = 

0.6640) (Figure 6.2.c.) over the 10 weeks. 

6.5.4. CGS 21680 Prevents Healthy Weight Gain in NSG Mice Not Engrafted 

with hPBMCs 

As noted above, three NSG mice from each treatment group did not engraft hPBMCs. 

Nevertheless, these mice were also monitored for weight loss and signs of GVHD for 10 

◄ Figure 6.1. CGS 21680 reduces human T regulatory cells in humanised NSG mice.  
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weeks as per the engrafted mice above. CGS 21680-injected mice gained significantly less 

weight over the 10 weeks compared to vehicle-injected mice (P = 0.0029) (Figure 6.2.d.). 

Both CGS 21680- and vehicle-injected mice demonstrated similar but minimal clinical signs 

of GVHD over the 10 weeks (mean clinical scores of 0.4 ± 0.2 and 0.3 ± 0.2) (P = 0.4557) 

(Figure 6.2.e.) consistent with the lack of hPBMC engraftment. Moreover, all CGS 21680- 

and vehicle-injected mice not engrafted with hPBMCs survived the entire 10 weeks (Figure 

6.2.f.). 

 

 (a - f) NSG mice 
were injected daily with either saline/0.2% DMSO (vehicle) or vehicle containing CGS 21680 (0.1 
mg/kg) (day -2 to day 11), and with 10 x 106 hPBMCs (day 0). NSG mice engrafted with hPBMCs 
were monitored for (a) weight loss, (b) clinical score, and (c) survival over 10 weeks. Data represents 
(a, b) group means ± SEM or (c) percent survival (vehicle n = 22, CGS 21680 n = 21). ** P < 0.005 
compared to vehicle-injected mice. (d – f) Mice which were not engrafted with hCD45+ leukocytes at 
3 weeks (blood) and at 10 weeks (spleen) (results not shown) were monitored for (d) weight loss, (e) 
clinical score, and (f) survival. Data represents (d, e) group means ± SEM or (f) percent survival 
(vehicle n = 3, CGS 21680 n = 3). ** P < 0.005 compared to vehicle-injected mice. 

 

6.5.5. CGS 21680 Reduces Liver Infiltrates in Humanised NSG Mice 

Tissues from mice which had engrafted hPBMCs (n = 20 per group) were examined by 

histology. Livers from CGS 21680-injected mice demonstrated reduced leukocyte infiltration 

Figure 6.2. CGS 21680 worsens weight loss in NSG and humanised NSG mice. 
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but similar structural damage compared to vehicle-injected mice (Figure 6.3.). CGS 21680-

injected mice demonstrated mildly reduced leukocyte infiltration into small intestine of 

vehicle-injected mice, but there were no structural differences, with all mice demonstrating 

minimal rounding of villi and crypt cell apoptosis (Figure 6.3.). CGS 21680- and vehicle-

injected mice demonstrated similar skin histology, with all mice demonstrating leukocyte 

infiltration and epidermal thickening (Figure 6.3.). 

 

 NSG mice were injected 
daily with either saline/0.2% DMSO (vehicle) or vehicle containing CGS 21680 (0.1 mg/kg) (day -2 
to day 11), and with 10 x 106 hPBMCs (day 0). Tissue sections (liver, small intestine, and skin) from 
hPBMC-engrafted mice were stained with haematoxylin and eosin. Images were captured by 
microscopy with each image representative of twenty mice per group; bars represent 100 μm. 

 

6.5.6. CGS 21680 Increases Serum hIL-6 but Reduces hTNF-α in Humanised 

NSG Mice 

The pro-inflammatory cytokine storm that preludes immune cell infiltration and 

inflammatory damage of target organs is an important stage of GVHD pathogenesis (Ferrara 

et al., 1999). Therefore, to determine if CGS 21680 impacts human cytokines, a multiplex 

Figure 6.3. CGS 21680 reduces liver infiltrates in humanised NSG mice. 
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assay was used to analyse concentrations of serum hIL-2, hIL-6, hIL-10, hTNF-α, and hIFN-γ 

from CGS 21680-injected mice (n = 15) and vehicle-injected (n = 18).  

Mean serum hIL-2 concentrations were 83% lower in CGS 21680-injected mice compared to 

vehicle-injected mice but this was not significantly different (7.0 ± 1.2 pg/mL and 41.8 ± 

28.1 pg/mL, respectively; P = 0.2379) (Fig 3a). CGS 21680-injected mice demonstrated a 

significant four-fold increase in hIL-6 concentrations compared to vehicle-injected mice 

(141.0 ± 79.3 pg/mL and 35.4 ± 27.8 pg/mL, respectively; P < 0.0001). There was an 89% 

decrease in serum hIL-10 in CGS 21680-injected mice compared to vehicle-injected mice, 

but this did not reach statistical significance (18.9 ± 4.8 pg/mL and 170.0 ± 93.1 pg/mL, 

respectively; P = 0.0800) (Fig 4c). There was a significant 75% decrease in hTNF-α 

concentrations in CGS 21680-injected mice compared to vehicle-injected mice (18.9 ± 4.8 

pg/mL, and 77.0 ± 40.1 pg/mL, respectively; P = 0.0411) (Fig 4d). hIFN-γ concentrations in 

both treatment groups exceeded the highest standard (>10,000 pg/mL) (data not shown) and 

could not be compared. 

 

 (a - d) NSG mice were 
injected daily with either saline/0.2% DMSO (vehicle) or vehicle containing CGS 21680 (0.1 mg/kg) 
(day -2 to day 11), and with 10 x 106 hPBMCs (day 0). Concentrations of serum human (a) interleukin 
(IL)-2, (b) IL-6, (c) IL-10, and (d) tumour necrosis factor (TNF)-α from hPBMC-engrafted mice were 
analysed by a flow cytometric multiplex assay. Data represents group means ± SEM (vehicle n = 18, 
CGS 21680 n = 15); * P < 0.05, *** P < 0.0001 compared to vehicle-injected mice. 

Figure 6.4. CGS 21680 impacts serum cytokines in humanised NSG mice. 
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6.6. Discussion 
Previous studies have shown that the CD73/A2A pathway reduces disease severity in 

allogeneic mouse models of GVHD (Tsukamoto et al., 2012, Wang et al., 2013, Lappas et 

al., 2010, Han et al., 2013). However, the effect of A2A activation in humanised mouse 

models or in HSCT patients has not been reported. Using a humanised NSG mouse model of 

GVHD, the current study demonstrated that the A2A agonist CGS 21680 had opposing roles 

in disease development. CGS 21680 did not affect clinical score or mortality in humanised 

mice but reduced GVHD severity, as indicated by decreased leukocyte infiltration into the 

liver and serum hTNF-α in these mice. Unexpectedly, CGS 21680 increased weight loss and 

serum hIL-6, and reduced the frequency of Tregs, indicating that this A2A agonist worsens 

these disease parameters in this humanised mouse model of GVHD.  

CGS 21680 reduced leukocyte infiltration into the liver and serum hTNF-α indicating GVHD 

is reduced, at least in part, in humanised mice. This indicates that A2A activation has 

beneficial roles in this model. This finding parallels similar observations in allogeneic mouse 

models of GVHD where the A2A agonist ATL-146e reduces histological damage, leukocyte 

infiltration in livers and serum TNF-α (Lappas et al., 2010, Han et al., 2013). Conversely, 

pharmacological blockade or genetic deficiency of CD73, which limits extracellular 

adenosine (Bruns, 1980), worsens liver histology in allogeneic mouse models of GVHD 

(Tsukamoto et al., 2012, Wang et al., 2013). Of note, in allogeneic and humanised mouse 

models of GVHD, increased TNF-α levels correspond with disease severity (Kuroiwa et al., 

2001, Abraham et al., 2015) and blockade of this cytokine impairs GVHD in both of these 

models (Hill et al., 1999, King et al., 2009). Thus, collectively these studies suggest a crucial 

role for TNF-α in GVHD, and that activation of A2A can limit this in both allogeneic and 

humanised mouse models of this disease. 
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Contrary to above, the current study suggests that CGS 21680 worsens aspects of GVHD in 

humanised mice as evidenced through increased weight loss. This indicates that A2A 

activation by this agonist also has adverse roles in this model. Weight loss is a common 

indicator of disease severity in mouse models of GVHD (Naserian et al., 2018). The dose of 

CGS 21680 (0.1 mg/kg) used in this study is sufficient to prevent disease in mouse models of 

acute lung inflammation (Impellizzeri et al., 2011), pleurisy (da Rocha Lapa et al., 2012) and 

collagen-induced arthritis (Mazzon et al.). These studies reported no effect of CGS 21680 on 

weight, suggesting weight loss in CGS 21680-injected humanised mice is due in part to 

worsened GVHD. Supporting this, serum IL-6 was also increased in humanised mice. 

Although, hIL-6 has not been previously detected in the serum of humanised mice (Gregoire-

Gauthier et al., 2012, Abraham et al., 2015, Abraham et al., 2017), and its role in humanised 

mouse models of GVHD remains to be elucidated, IL-6 is implicated in GVHD progression 

in allogeneic mouse models (Koenecke et al., 2009, Tawara et al., 2011). In the current study, 

the increased serum hIL-6 concentrations were unexpected, as previously ATL-146e reduced 

serum IL-6 concentrations in allogeneic mouse models of GVHD (Lappas et al., 2010, Han et 

al., 2013). Moreover, CGS 21680 reduces IL-6 release from ex vivo anti-CD3/anti-CD28-

stimulated murine effector T cells (Romio et al., 2011). Conversely, increased serum IL-6 

concentrations correlate to disease severity as a result of A2A blockade in an allogeneic mouse 

model of GVHD (Wang et al., 2013). The reason for increased serum hIL-6 concentrations in 

CGS 21680-injected humanised mice remains unknown but supports the concept that A2A 

activation with this agonist has adverse roles in this model. 

In the current study, the frequency of Treg cells was also reduced in CGS 21680-injected 

humanised mice. This further supports the concept that A2A activation with this agonist has 

detrimental roles in humanised mice. Treg cells inversely correlate to GVHD progression in 

allogeneic (Edinger et al., 2003) and humanised mouse models (Cao et al., 2009), as well as 
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in HSCT recipients (Rieger et al., 2006, Fondi et al., 2009). The observed reduction in Treg 

cells was contrary to expectations, as in allogeneic mouse models ATL-146e increases Treg 

cells to ameliorate disease development (Lappas et al., 2010, Han et al., 2013). The 

mechanism by which CGS 21680 decreases Treg cells in the current study remains to be 

established. However, CGS 21680 reduced, albeit not significantly, serum hIL-2 and hIL-10 

in humanised mice. These cytokines are important for maintenance of Treg cells in 

humanised mice (Abraham et al., 2012, Abraham et al., 2017). Thus a decrease in one or both 

of these cytokines may have contributed to the lower frequency of Treg cells in CGS 21680-

injected mice. Alternatively, although not mutually exclusive to the above, IL-6 with IL-1β 

reduces Treg cell numbers through their conversion to Th1 and/or Th17 cells (Gu et al., 

2016b). Thus, the increased IL-6 in CGS 21680-injected mice may have contributed to the 

reduction in Treg cells. However, it should be noted that the amount of hIL-1β mRNA 

(Chapter 3) and serum hIL-1β (Abraham et al., 2017) in humanised mice is negligible, 

thereby potentially limiting the ability of hIL-6 to convert Treg cells to Th cells in this model.  

Concerning the above comparisons between CGS 21680 and ATL-146e in GVHD, it should 

be noted that these compounds differ pharmacologically, which may explain their differing 

effects in this disease. ATL-146e has two-fold greater affinity than CGS 21680 for human 

A2A (Ki of 45 ± 15 nM and 82 ± 18 nM, respectively) (Sullivan et al., 2001) and a three-fold 

greater affinity for murine A2A (4 ± 1.9 nM and 13 ± 3.5 nM, respectively) (Lappas et al., 

2005). Thus, these differences may be contributing to the varying effects of these two 

compounds in GVHD progression. As discussed above, ATL-146e could not be used in 

humanised NSG mice due to the lack of commercial availability. 

The current study also demonstrated that CGS 21680 prevented healthy weight gain in NSG 

mice not engrafted with hPBMCs. This suggests that this A2A agonist may be suppressing 

appetite or metabolism in these mice, which may also be contributing to the increased weight 
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loss in hPBMC-engrafted NSG mice in addition to GVHD. In rats, CGS 21680, at the same 

dose used in the current study, is sufficient to prevent weight gain by reducing food intake 

(Mingote et al., 2008, Micioni Di Bonaventura et al., 2012). Moreover, CGS 21680 at this 

same dose increases energy expenditure in mice to prevent diet-induced obesity (Gnad et al., 

2014) and causes hypothermia (Carlin et al., 2018). The reasons for the different effects of 

CGS 21680 on mouse weight in these and the current studies compared to those discussed 

above (Impellizzeri et al., 2011, da Rocha Lapa et al., 2012, Mazzon et al., 2011) remains 

unknown, but may reflect strain differences. CGS 21680-mediated effects on metabolism and 

weight were observed in C57BL/6 mice (Gnad et al., 2014, Carlin et al., 2018) and NSG 

mice (this study), whilst CGS 21680 was reported to have no such effects in CD1, Swiss and 

DBA/1 mice (Impellizzeri et al., 2011, da Rocha Lapa et al., 2012, Mazzon et al., 2011). 

Finally, it should be noted that IL-6 can potentially impact mouse body weight, as genetic 

deficiency of IL-6 promotes obesity (Wallenius et al., 2002). Thus, the increased weight loss 

observed in CGS 21680-injected humanised mice may be mediated via an IL-6-dependent 

mechanism.  

In summary, the A2A agonist CGS 21680 has opposing effects in a humanised mouse model 

of GVHD. Moreover, CGS 21680 can prevent weight gain in healthy NSG mice. As 

discussed above, CGS 21680 does not alter weight in all mouse strains, whilst adverse effects 

on weight have not been reported for the A2A agonist ATL-146e. Therefore, the therapeutic 

efficacy of A2A activation with certain agonists in HSCT recipients or a subset of these 

patients may be limited by adverse effects on weight as well as decreased Treg cell frequency 

and increased IL-6 production. 
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7.2.  Abstract 
Psoriasis is a chronic inflammatory skin disorder, characterised by epidermal hyperplasia 

(acanthosis) and leukocyte infiltration of the skin. Current therapies are inadequate, 

highlighting the need for new therapeutic targets. The P2X7 receptor is implicated in the 

pathogenesis of psoriasis. This study investigated the role of P2X7 in imiquimod (IMQ)-

induced psoriasis-like inflammation. Topically-applied IMQ caused two-fold greater ear 

swelling in BALB/c mice compared to C57BL/6 mice, which encode a partial loss-of-

function missense mutation in the P2RX7 gene. However, there was no difference in 

histological skin pathology (acanthosis and leukocyte infiltration) between the two strains. 

IMQ treatment up-regulated P2X7 expression in skin from both mouse strains. Additionally, 

IMQ induced ATP release from cultured human keratinocytes, a process independent of cell 

death. Injection of the P2X7 antagonist Brilliant Blue G (BBG) but not A-804598 partly 

reduced ear swelling compared to vehicle-injected control mice. Neither antagonist altered 

skin pathology. Moreover, no difference in ear swelling or skin pathology was observed 

between C57BL/6 and P2X7 knock-out (KO) mice. Flow cytometric analysis of IMQ-treated 

skin from C57BL/6 and P2X7 KO mice demonstrated similar leukocyte infiltration, including 

neutrophils, macrophages and T cells. In conclusion, this study demonstrates that P2X7 is not 

essential for development of IMQ-induced psoriasis-like inflammation, but does not exclude 

a role for this receptor in psoriasis development in humans or other mouse models of this 

disease. 

 

7.3. Introduction 
Psoriasis affects 1-3% of the general population of Western countries, reducing quality of life 

and posing a significant economic burden (Lebwohl et al., 2014). In the USA alone, psoriasis 

is estimated to cost $112 billion per year (Brezinski et al., 2015). Inflammation and hyper-
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proliferation of keratinocytes in psoriasis results in epidermal hyperplasia (acanthosis) and 

plaque- or pustular-like skin lesions (Nestle et al., 2009b). This characteristic inflammation is 

driven by infiltrating leukocytes, including neutrophils, macrophages and T cells (Nestle et 

al., 2009a). These leukocytes exert their effects by release of pro-inflammatory cytokines 

such as interferon gamma (IFN-γ) (Nestle et al., 2009a, Nestle et al., 2009b), which promotes 

the hyper-proliferation of keratinocytes, with the resulting cell damage exacerbating 

inflammation and leading to plaque formation (Nestle et al., 2009a).  

The imiquimod (IMQ)-induced psoriasis-like inflammation mouse model is a valuable model 

for studying psoriasis pathogenesis. This model involves application of AldaraTM cream, 

containing IMQ, which causes epidermal hyperplasia and immune infiltration similar to 

psoriasis in humans (van der Fits et al., 2009). IMQ treatment results in scaling and 

thickening of skin as well as infiltration of immune cells 48-72 hours after first application 

(van der Fits et al., 2009). This model has been well characterised (Flutter and Nestle, 2013) 

and used in some 200 different studies to date (Hawkes et al., 2017).  

The ATP-gated P2X7 receptor channel has been implicated in a number of skin diseases 

including psoriasis (Geraghty et al., 2016). P2X7 is present on keratinocytes (Greig et al., 

2003) and immune cells important in psoriasis including neutrophils (Karmakar et al., 2016), 

macrophages (De Torre-Minguela et al., 2016) and T cells (MacLeod et al., 2014), where its 

activation can drive cytokine release and potentially promote inflammation (Geraghty et al., 

2016). Notably, IFN-γ can up-regulate the expression of P2X7 in primary keratinocytes 

(Pastore et al., 2007) and P2X7 expression is increased in human psoriatic lesions (Pastore et 

al., 2007, Killeen et al., 2013). A functional role for P2X7 in psoriasis has also been 

suggested. Injection of the P2X7 agonist 3’-O-(4-benzoyl)benzoyl ATP into normal human 

skin explants induces increased expression of cytokines and other molecules commonly 

associated with psoriasis, including interleukin (IL)-1β, IL-6 and tumour necrosis factor alpha 



www.manaraa.com

186 
 

(TNF-α) (Killeen et al., 2013). Importantly, these responses could be prevented through 

pharmacological blockade of P2X7 (Killeen et al., 2013). P2X7 activation of skin migrating 

dendritic cells also promoted Th17 responses (Killeen et al., 2013), a T cell subtype known to 

contribute to psoriasis pathogenesis (Zheng et al., 2007). 

This study investigated the role of P2X7 in the pathogenesis of psoriasis using a murine 

model of IMQ-induced psoriasis-like inflammation. Results indicate that P2X7 is up-

regulated in psoriatic skin in both BALB/c and C57BL/6 mice, which encode the wild-type 

(P451) or partial loss-of function (451L) allele, respectively (Adriouch et al., 2002). IMQ 

also induced ATP release from human keratinocytes. However, pharmacological blockade or 

genetic deletion of P2X7 showed a limited role for P2X7 in this murine model of psoriasis. 

 

7.4. Materials and Methods 

7.4.1. Cells 

Human HaCaT keratinocytes and murine J774 macrophages were obtained and cultured as 

described (Farrell et al., 2010, Sluyter and Vine, 2016). Cell lines were checked for 

Mycoplasma spp. infections every two months, using a MycoAlertTM Mycoplasma detection 

kit (Lonza, Basal, Switzerland) as per the manufacturer’s instructions. Cells were routinely 

negative for Mycoplasma spp.  

7.4.2. Mice 

Female and male mice (aged 6-10 weeks) were used in experiments conducted under protocol 

AE14/10, which was approved by the University of Wollongong Animal Ethics Committee 

(Wollongong, Australia). BALB/c and C57BL/6 mice were obtained from Australian 

BioResources (Moss Vale, Australia). P2X7 knock-out (KO) mice (Solle et al., 2001) 

backcrossed onto a C57BL/6 background (Tran et al., 2010), were maintained at the 
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University of Wollongong and genotyped as described (Solle et al., 2001). All mice were 

housed in open top cages and provided with food and water, ad libitum. All mice were 

housed in a temperature-controlled environment with a 12 h light/12 h dark cycle. 

7.4.3. Murine Model of IMQ-Induced Psoriasis-Like Inflammation 

A total of 25 mg of AldaraTM cream (1.25 mg IMQ) (iNova Pharmaceuticals, Thornleigh, 

Australia) was applied to both sides of one ear of each mouse and the contralateral ear 

remained untreated (control) (days 0-5) as described (Riol-Blanco et al., 2014). Prior to 

treatment mice were weighed and ear measurements were recorded using Interapid (Rolle, 

Switzerland) spring-loaded calipers (days 0-6). In some experiments, Brilliant Blue G (BBG) 

or A-804598 (both Sigma-Aldrich, St Louis, MO, USA) (final concentration 50 mg/kg in 

mice), and their respective diluent controls (saline or dimethyl sulfoxide (DMSO), 

respectively), were injected every second day (as indicated). Mice were sacrificed on day 6 

and ears collected. 

7.4.4. Histological Analysis 

Ears from euthanised mice were incubated overnight in neutral buffered (10%) formalin 

(Sigma-Aldrich). Fixed tissues were removed, embedded in paraffin, sectioned (5 μm) and 

stained with haematoxylin and eosin (POCD, Artarmon, Australia). Histology was observed 

using a Leica (Wetzlar, Germany) DM500 inverted light microscope, with images captured 

and processed using Leica application suite software version 4.7. Acanthosis (epidermal 

thickness) was measured using ImageJ software version 1.48 (National Institutes of Health, 

Bethesda, MD, USA). 

7.4.5. Isolation of RNA and cDNA Synthesis 

Ears from euthanised mice were stored in RNAlater (Sigma-Aldrich) at -20°C until required. 

RNA was isolated using the ISOLATE II RNA Mini Kit (Bioline, London, UK) as per the 

manufacturer’s instructions. Briefly, tissue in lysis buffer containing 1% (v/v) β-
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mercaptoethanol (Sigma-Aldrich) was homogenised (two 20 second cycles at 5500 rpm) in a 

Bertin Technologies (Montigny-le-Bretonneux, France) Precellys 24 tissue homogeniser. 

Isolated RNA was immediately converted to cDNA using the qScript cDNA Synthesis Kit 

(Quanta Biosciences, Gaithersburg, MD, USA) as per the manufacturer’s instructions. cDNA 

was checked by PCR amplification of the house keeping gene glyceraldehyde 3-phosphate 

dehydrogenase (Invitrogen, Carlsbad, CA, USA) for 35 cycles at 95°C for 1 min, 55°C for 1 

min and 72°C for 1 min and a holding temperature of 4°C. Purity and size of amplicons were 

confirmed by a 2% agarose gel electrophoresis.  

7.4.6. Quantitative Real-Time Polymerase Chain Reaction 

qPCR reactions were performed using TaqMan Universal Master Mix II (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) according to the manufacturer’s instructions with 

primers for FAM-labelled GAPDH (Mm99999915_g1) and VIC-labelled P2RX7 

(Mm01199503_m1) (Thermo Fisher Scientific). qPCR cycles consisted of an initial step of 

50°C for 2 min, followed by 50°C for 10 min, and 40 cycles at 95°C for 15 s, and 60°C for 1 

min. qPCR reactions were conducted in triplicate on a Roche Diagnostics (Indianapolis, IN, 

USA) LightCycler 480 and analysis was conducted using LightCycler480 software version 

1.5.1.  

7.4.7. ATP Release Assay 

ATP release assays were performed as described (Mizumoto et al., 2003). Briefly, HaCaT 

keratinocytes were plated in 12-well plates (Greiner Bio-One, Frickenhausen, Germany) at a 

concentration of 2 x 105 cells/well in RPMI 1640 medium containing 2 mM L-glutamine, 1% 

non-essential amino acids (all Thermo Fisher Scientific), and 10% (v/v) heat-inactivated 

foetal bovine serum (Bovogen Biologicals, Keller East, Australia), and incubated for 24 h at 

37°C/5% CO2. Cells were washed thrice with PBS (Thermo Fisher Scientific), and incubated 

in 1 mL PBS containing DMSO or 1 µg/mL IMQ (Sigma-Aldrich) in DMSO for 30 min at 
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37°C/5% CO2. The final concentration of DMSO in both groups was 0.1%. Cells were then 

centrifuged through 10% bovine serum albumin (4,000 x g for 3 min) and cell free 

supernatants were stored in duplicate at -20°C until required. ATP concentrations in 

supernatants were assessed using a Bioluminescence ATP Assay Kit (Sigma-Aldrich) as 

described (Mansfield and Hughes, 2014). The amount of lactate dehydrogenase (LDH) in 

supernatants was determined using a Cytotoxicity Detection Kit (LDH) (Roche Diagnostics) 

as per the manufacturer’s instructions using a Molecular devices (Sunnyvale, CA, USA) 

Spectramax Plus 384 plate reader.  

7.4.8. ATP-Induced Ethidium+ Uptake Assay 

P2X7 pore formation was quantified by measuring ATP-induced ethidium+ uptake as 

described (Bartlett et al., 2013). Briefly, J774 cells in NaCl medium (145 mM NaCl, 5 mM 

KCl, 5 mM glucose and 10 mM HEPES, pH 7.5) were pre-incubated in the absence or 

presence of BBG or A-804598 (as indicated) for 15 min at 37°C. Cells were then incubated 

with 25 μM ethidium bromide (Sigma-Aldrich) in the absence or presence of 1 mM ATP 

(Sigma-Aldrich) for 10 min. Incubations were stopped by addition of ice-cold NaCl medium 

containing 20 mM MgCl2 (MgCl2 medium) and cells were washed with NaCl medium (300 x 

g for 3 min). Data was collected using a BD Biosciences (San Jose, CA, USA) LSRFortessa 

X-20 flow cytometer (using band-pass filter 530/30 for ethidium+) and FACSDiva software 

version 8.0. Mean fluorescence intensity (MFI) of ethidium+ uptake was analysed using 

FlowJo software version 8.7.1. (TreeStar Inc., Ashland, OH, USA). 

7.4.9. Immunophenotyping 

CD16/32 Fc Block (clone 2-4G2), Brilliant Violet (BV)450-conjugated rat anti-mouse Ly-6G 

(clone 1A8), peridinin chlorophyll protein (PerCP)-conjugated rat anti-mouse CD4 (clone 

RM4.5), allophycocyanin (APCy)-conjugated rat anti-mouse CD45 (clone 30-F11) and R-

phycoerythrin (PE)-Cy7 conjugated hamster anti-mouse CD3e (clone 145-2C11) were from 
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BD Biosciences. PE-conjugated rat anti-mouse CD11b (clone M1/70) was from BioLegend 

(San Diego, CA, USA). 

Enzymatic digestion of ears was performed as described (Rana et al., 2008). Briefly, dorsal 

and ventral sides of ears were separated and incubated in 20 mM EDTA (Sigma-Aldrich) in 

Tris-buffered saline (pH 7.3) for 2 hours at 37°C. Epidermal and dermal layers were 

mechanically separated, cut into smaller fragments using a scalpel and homogenised in RPMI 

1640 medium containing 1 mg/mL collagenase IV and 15 U/mL DNase I (both Sigma-

Aldrich), and 5% heat-inactivated foetal bovine serum at room temperature for 90 min with 

agitation. Enzymatic digestion was stopped by addition of 100 mM EDTA and suspensions 

filtered through 70 μm cell strainers (Falcon, Franklin, NJ, USA). Cells were centrifuged 

(300 x g for 5 min), resuspended in PBS and counted manually using a Boeco (Hamburg, 

Germany) Neubauer Improved Bright Line haemocytometer. Cells were incubated with 

CD16/32 Fc Block for 10 min and then with fluorochrome-conjugated monoclonal antibodies 

in the dark for 10 min. Cells were washed twice with PBS (300 x g for 3 min), resuspended in 

PBS and data was collected using a LSRFortessa X-20 flow cytometer (using band pass 

filters 450/50 for BV421, 695/40-A for PerCP, 575/25-A for PE, 780/60 for PE-Cy7 and 

670/30 for APCy) and FACSDiva software. The relative percentage of cells was analysed 

using FlowJo software. 

7.4.10. Statistical Analysis 

Data is given as mean ± standard error of the mean (SEM). Statistical differences were 

calculated using Student’s t test for single comparisons or one-way analysis of variance 

(ANOVA) with Tukeys post-hoc test for multiple comparisons. Weight and ear 

measurements were analysed using a repeated measures two-way ANOVA. All statistical 

analyses and graphs were generated using Prism 5 for Windows software (GraphPad 

Software, La Jolla, CA, USA). 
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7.5. Results 

7.5.1. IMQ Treatment Induces Greater Ear Swelling in BALB/c Mice 

Compared to C57BL/6 Mice 

To investigate the role of P2X7 in psoriasis, IMQ-induced psoriasis-like inflammation was 

first compared over 6 days in BALB/c and C57BL/6 mice. C57BL/6 mice encode a loss-of-

function mutation (P451L) in the P2RX7 gene, while BALB/c mice are wild-type at this 

allele (Adriouch et al., 2002). IMQ induced ear swelling in ears relative to control 

(contralateral untreated) ears from day 3 in both strains (Figure 7.1.a.). However, IMQ-

induced ear swelling was greater in BALB/c mice compared to C57BL/6 mice over 6 days (P 

< 0.0001) (Figure 1a). Histological analysis of IMQ-treated ears from BALB/c and C57BL/6 

mice demonstrated acanthosis (epidermal thickening) and leukocyte infiltration compared to 

control ears; however, there was no difference between strains (Figure 7.1.b.). Image analysis 

of histological sections revealed that epidermal thickness was significantly greater in IMQ-

treated ears compared to control ears from both BALB/c mice (P < 0.0001) and C57BL/6 

mice (P < 0.0001). However, IMQ-induced epidermal thickening did not significantly differ 

between the two strains (Figure 7.1.c.).  

7.5.2. P2X7 mRNA is Up-Regulated in IMQ-Induced Psoriatic Lesions and 

IMQ Induces ATP Release From Keratinocytes 

Next, P2X7 mRNA expression in IMQ-treated and control ears was analysed by qPCR. P2X7 

was significantly up-regulated almost three-fold and two-fold in IMQ-treated ears compared 

to control ears from BALB/c mice (P = 0.0002) and C57BL/6 mice (P = 0.0343), 

respectively (Figure 7.2.a.). To further determine a potential role for P2X7 activation in IMQ- 

induced psoriasis-like inflammation, HaCaT keratinocytes were incubated in the presence of 

1 μg/mL IMQ or DMSO (vehicle control) for 30 min and the amount of ATP released 

measured using a bioluminescence assay. IMQ induced significantly greater amounts of ATP 
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mice. (a-b) AldaraTM cream (containing 5% IMQ) was applied to one ear of BALB/c and C57BL/6 
mice from day 0 to 5. Contralateral ears were left untreated (control). (a) Ear swelling was measured 
over 6 days. Data represents group means ± SEM (n = 14 per strain). *** P < 0.0001 compared to 
C57BL/6. (b) Ears from mice at end-point were stained with haematoxylin and eosin, and viewed by 
microscopy. Each image is representative of 14 mice per group. Bars represent 200 μm. (c) Epidermal 
thickness was measured on histological images using ImageJ. Data represents group means ± SEM (n 
= 14 mice per group); symbols represent individual ears; *** P < 0.0001 compared to corresponding 
control. 

 

release compared to DMSO (P = 0.0425) (Figure 7.2.b.). To examine if this ATP release was 

due to cytotoxicity by IMQ, the relative amount of LDH in the above supernatants was 

determined using a spectrophotometric assay. Although the absorbance in the IMQ cells was 

reduced the absorbance values were not significantly different between IMQ and control 

groups (Figure 7.2.c.). 

Figure 7.1. IMQ treatment induces greater ear swelling in BALB/c mice compared to C57BL/6  
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keratinocytes. (a) P2X7 expression in untreated (control) and IMQ-treated ears from BALB/c and 
C57BL/6 mice at end-point (Figure 1) was assessed by qPCR. Data represents group means ± SEM (n 
= 5 mice per strain); symbols represent individual ears; * P < 0.05, *** P < 0.0001 compared to 
corresponding control. (b and c) Human HaCaT keratinocytes were incubated in DMSO or 1 µg/mL 
IMQ for 30 min and (b) ATP release assessed using a bioluminescence assay, and (c) LDH release 
was assessed using a spectrophotometric assay. Data represents group means ± SEM (n = 9 from three 
individual experiments); * P < 0.05 compared to DMSO. 

 

7.5.3. BBG Does Not Prevent IMQ-Induced Psoriasis-Like Inflammation 

To investigate the role of P2X7 in IMQ-induced psoriasis-like inflammation, the P2X7 

antagonist BBG (Jiang et al., 2000) was used in this model. First, to confirm that BBG can 

impair murine P2X7 activation, J774 macrophages, which express functional P2X7 

(Coutinho-Silva et al., 2005), were pre-incubated in the absence or presence of 10 μM BBG 

and ATP-induced cation dye uptake was measured by flow cytometry. BBG significantly 

reduced ATP-induced ethidium+ uptake by 87% (P < 0.0001) (Figure 7.3.a.). To determine if 

BBG could prevent the development of IMQ-induced psoriasis-like inflammation BALB/c 

mice were treated with IMQ as above and injected with BBG or saline (vehicle control) every 

second day (days 0, 2 and 4). IMQ induced ear swelling in mice from day 3 regardless of 

treatment. However, IMQ-induced ear swelling was partially reduced (by 21%) in BBG-

injected mice compared to saline-injected mice over 6 days (P = 0.0068) (Figure 7.3.b.). 

Figure 7.2. P2X7 is up-regulated in IMQ-treated skin and IMQ can induce ATP release from  
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Histological analysis of IMQ-treated ears from BBG- and saline-injected mice demonstrated 

epidermal thickening and leukocyte infiltration compared to control ears; but there were no 

differences between BBG and saline treatments (Figure 7.3.c.). Image analysis of histological 

sections revealed that epidermal thickness was greater in IMQ-treated ears compared to 

control ears from BBG-injected mice (P < 0.0001) and saline-injected mice (P < 0.0001). 

Epidermal thickness in IMQ-treated and control ears was similar between BBG and saline 

treatments (Figure 7.3.d.).  

7.5.4. A-804598 Does Not Prevent IMQ-Induced Psoriasis-Like Inflammation 

To further examine the potential effects of P2X7 blockade on psoriasis-like inflammation, the 

P2X7 antagonist A-804598 (Donnelly-Roberts et al., 2009b) was used. Similar to BBG, A-

804598 near-completely abrogated ATP-induced ethidium+ uptake in J774 macrophages (P < 

0.0001) (Figure 7.4.a.). BALB/c mice were treated with IMQ as above and injected with A-

804598 or DMSO (vehicle control) every second day (days 0 and 2). IMQ induced ear 

swelling in mice from day 3 regardless of treatment. A-804598- and DMSO-injected mice 

demonstrated similar ear swelling (Figure 7.4.b.). Histological analysis of IMQ-treated ears 

from A-804598-injected and DMSO-injected mice demonstrated epidermal thickening and 

leukocyte infiltration compared to control ears with no difference between A-804598 and 

control treatments (Figure 7.4.c.). Image analysis of histological sections revealed that 

epidermal thickness was greater in IMQ-treated ears compared to control ears from A-

804598-injected mice (P < 0.0001) and DMSO-injected mice (P < 0.0001). Epidermal 

thickness in IMQ-treated and control ears was also similar between A-804598 and control 

treatments (Figure 7.4.d.).  
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 (a) Murine J774 
macrophages were incubated for 15 min at 37°C in the absence or presence of 10 μM BBG, and then 
with 25 μM ethidium bromide in the absence or presence of 1 mM ATP for 10 min at 37°C. Assays 
were stopped by addition of MgCl2 medium, and ethidium+ uptake was then assessed by flow 
cytometry. Data represents group means ± SEM (n = 3); * P < 0.05, *** P < 0.0001 compared to 
corresponding basal. (b-d) AldaraTM cream (containing 5% IMQ) was applied to one ear of BALB/c 
mice from day 0 to 5. Contralateral ears were left untreated (control). Mice were injected i.p. with 
BBG or saline (control) on days 0, 2, and 4. (b) Ear swelling was measured over 6 days. Data 
represents group means ± SEM (n = 5 mice per treatment); ** P < 0.005 compared to BBG. (c) Ears 
from mice at end-point were stained with haematoxylin and eosin, and viewed by microscopy. Each 
image is representative of 5 mice per treatment. Bars represent 200 μm. (d) Epidermal thickness was 
measured on histological images using ImageJ. Data represents group means ± SEM (n = 5 mice per 
treatment); symbols represent individual ears; *** P < 0.0001 compared to corresponding control. 

  

Figure 7.3. BBG does not prevent IMQ-induced psoriasis-like inflammation.  
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 (a) Murine 
J774 macrophages were incubated for 15 min at 37°C in the absence or presence of 1 μM A-804598, 
and then with 25 μM ethidium bromide in the absence or presence of 1 mM ATP for 10 min at 37°C. 
Assays were stopped by addition of MgCl2 medium, and ethidium+ uptake was then assessed by flow 
cytometry. Data represents group means ± SEM (n = 3); *** P < 0.0001 compared to corresponding 
basal. (b-d) AldaraTM cream (containing 5% IMQ) was applied to one ear of BALB/c mice from day 0 
to 5. Contralateral ears were left untreated (control). Mice were injected i.p. with A-804598 or DMSO 
(control) on days 0 and 2. (b) Ear swelling was measured over 6 days. Data represents group means ± 
SEM (n = 5 mice per treatment). (c) Ears from mice at end-point were stained with haematoxylin and 
eosin, and viewed by microscopy. Each image is representative of 5 mice per treatment. Bars 
represent 200 μm. (d) Epidermal thickness was measured on histological images using ImageJ. Data 
represents group means ± SEM (n = 5 mice per treatment); symbols represent individual ears; *** P < 
0.0001 compared to corresponding control. 

 

  

Figure 7.4. A-804598 does not prevent IMQ-induced psoriasis-like inflammation.  
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7.5.5. Genetic Deletion of P2X7 Does Not Prevent IMQ-Induced Psoriasis-Like 

Inflammation  

Finally, to determine if genetic deficiency of P2X7 could alter IMQ-induced psoriasis-like 

inflammation, C57BL/6 and P2X7 KO mice were treated with IMQ as above. Both C57BL/6 

and P2X7 KO mice demonstrated ear swelling in IMQ-treated ears from day 3, but this was 

not significantly different between the two strains over 6 days (Figure 7.5.a.). Histological 

analysis of IMQ-treated ears from C57BL/6 and P2X7 KO mice demonstrated epidermal 

thickening and leukocyte infiltration compared to control ears, with no difference between 

strains (Figure 7.5.b.). Image analysis of histology revealed that epidermal thickness was 

significantly greater in IMQ-treated ears compared to control ears from C57BL/6 mice (P < 

0.0001) and P2X7 KO mice (P < 0.0001). Epidermal thickness in IMQ-treated and control 

ears was also similar between C57BL/6 and P2X7 KO mice (Figure 7.5.c.). 

7.5.6. IMQ-Induced Leukocyte Infiltration is Similar in C57BL/6 and P2X7 KO 

Mice 

The data above indicates that P2X7 deficiency does not prevent IMQ-induced psoriasis-like 

inflammation in mice. However, the possibility remained that P2X7 deficiency may have 

altered the number of leukocyte subsets infiltrating the skin in this disease model. Therefore, 

whole ear cell suspensions of IMQ-treated and control ears from C57BL/6 and P2X7 KO 

mice were examined by flow cytometry. IMQ induced a significant increase in total skin 

leukocytes in both C57BL/6 (P = 0.0002) and P2X7 KO (P = 0.0029) mice, but there was no 

significant difference between strains (Figure 7.6.a.). Subset analysis also revealed IMQ 

induced a significant increase in neutrophils and macrophages in both C57BL/6 (P = 0.0027 

and P < 0.0001, respectively) and P2X7 KO (P = 0.0020 and P = 0.0046, respectively) mice, 

but there was no significant difference between strains (Figure 7.6.b-c.). IMQ induced a 

significant increase in T cells in C57BL/6 (P = 0.0006) but not P2X7 KO mice; yet there was 

no significant difference between strains (Figure 7.6.d.).  
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(a-c) AldaraTM cream (containing 5% IMQ) was applied to ears of C57BL/6 and P2X7 KO mice from 
day 0 to 5. Contralateral ears were left untreated (control). (a) Ear swelling was measured over 6 days. 
Data represents group means ± SEM (n = 10 mice per strain). (b) Ears from mice at end-point were 
stained with haematoxylin and eosin, and viewed by microscopy. Each image is representative of 10 
mice per group. Bars represent 200 μm. (c) Epidermal thickness was measured on histological images 
using ImageJ. Data represents group means ± SEM (n = 10 mice per strain); symbols represent 
individual ears; *** P < 0.0001 compared to corresponding control. 

 

  

Figure 7.5. Genetic deletion of P2X7 does not prevent IMQ-induced psoriasis-like inflammation. 
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(a-d) Single whole ear cell suspensions of ears from untreated (control) and IMQ-treated C57BL/6 
and P2X7 KO mice at end-point (Figure 5) were labelled with fluorochrome-conjugated mAb and 
analysed by four-colour flow cytometry. Data represents total numbers of group means ± SEM for (a) 
leukocytes (CD45+), (b) neutrophils (CD45+ Ly6G+ CD11b+) (c) macrophages (CD45+ Ly6G- 
CD11b+), and (d) T cells (CD45+ CD3+) in each cell suspension (n = 5 mice per group); symbols 
represent individual ears; ** P < 0.005, *** P < 0.0001 compared to respective control ears. 

 

  

Figure 7.6. IMQ-induced leukocyte infiltration is similar in C57BL/6 and P2X7 KO mice.  
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7.6. Discussion 
This study demonstrated that P2X7 is not essential for the development of IMQ-induced 

psoriasis-like inflammation in mice. With the exception of a partial effect on ear swelling by 

BBG, pharmacological blockade or genetic deletion of P2X7 did not impact development of 

IMQ-induced psoriasis-like inflammation. The general lack of effect of either P2X7 

antagonist was not due to the preparations of BBG or A-804598, as both compounds blocked 

ATP-induced dye uptake into murine macrophages in this study. Moreover, both compounds 

were used in vivo at concentrations known to inhibit murine P2X7 (Bartlett et al., 2014). In 

regards to IMQ-induced ear swelling, BBG may be blocking alternate molecules, such as 

P2X1 (Seyffert et al., 2004), P2X5 (Bo et al., 2003), the ATP channel pannexin-1 (Qiu and 

Dahl, 2009) or a voltage-gated sodium channel (Jo and Bean, 2011). 

Genetic deficiency of P2X7 did not impact leukocyte infiltration in IMQ-induced psoriasis-

like inflammation. In contrast, a previous study reported that P2X7 KO mice had reduced 

neutrophil infiltration into skin in a croton oil model of irritant contact dermatitis (Da Silva et 

al., 2013). However, in line with our current study, ear swelling was similar between wild-

type and P2X7 KO mice in croton oil-induced irritant contact dermatitis (Weber et al., 2010, 

Da Silva et al., 2013). Conversely, P2X7 KO mice are protected from allergic contact 

dermatitis, which was also assessed by ear swelling measurements (Weber et al., 2010). This 

previous study demonstrated that P2X7-mediated IL-1β release, which requires NLRP3 

inflammasome activation (Di Virgilio, 2007), was essential for allergic contact dermatitis 

(Weber et al., 2010). In contrast, activation of the NLRP3 inflammasome is not required for 

IMQ-induced psoriasis-like inflammation (Rabeony et al., 2015). Thus, this provides a 

possible explanation as to why P2X7 is not essential in this model of psoriasis. Collectively, 

this indicates P2X7 plays differing roles in various inflammatory skin disorders, but given 

previous findings (Pastore et al., 2007, Killeen et al., 2013) further investigation of P2X7 in 
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human psoriasis and other mouse models of this disease is warranted. Moreover, it should be 

noted that C-terminal truncated P2X7 variants are present at low amounts in C57BL/6 and 

Pfizer P2X7 KO mice (Masin et al., 2012), the same strains used in the current study. 

Although P2X7-induced pore formation is absent in splenic T and B cells (Pupovac et al., 

2015), epidermal Langerhans cells and keratinocytes (Tran et al., 2010) from these P2X7 KO 

mice, a role for these escape P2X7 variants in IMQ-induced psoriasis-like inflammation in 

P2X7 KO mice cannot be excluded. P2X7 KO strains in which escape variants have not been 

reported, such as those from Lexicon Pharmaceuticals (Basso et al., 2009) or conditional 

humanised P2X7 KO mice (Metzger et al., 2016), provide alternatives to assess the potential 

role of P2X7 in psoriasis. 

Ear swelling, but not histological acanthosis or inflammation, differed between BALB/c and 

C57BL/6 mice. Thus, this difference in ear swelling most likely reflects differences in 

oedema. Coincidentally, this difference in ear swelling corresponds to P2RX7 genotype 

(P451L mutation), but P2X7 deficiency in mice on a C57BL/6 background does not alter ear 

swelling compared to wild-type C57BL/6 mice. This suggests that the difference between 

BALB/c and C57BL/6 mice is not due to reduced P2X7 activity as a result of the P451L 

mutation in C57BL/6 mice. In this regard, whilst some have reported that the P451L mutation 

results in a loss of P2X7 activity (Adriouch et al., 2002, Young et al., 2006), others have 

observed no differences in the activity or pharmacological profiles between recombinant 

BALB/c and C57BL/6 P2X7 (Donnelly-Roberts et al., 2009a). Moreover, it remains to be 

established if P2X7 variants differ between BALB/c and C57BL/6 mice, and if P2X7 activity 

differs between these two mouse strains in vivo. BALB/c and C57BL/6 mice have a diverse 

lineage and display phenotypic and genetic differences (Simpson et al., 1997, Beck et al., 

2000). Thus, differences in IMQ-induced ear swelling between these strains could be due to 

any number of genotypic or phenotypic differences. Notably, IL-22 expression is increased in 
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IMQ-induced psoriasis-like inflammation in BALB/c, but not C57BL/6, mice (van der Fits et 

al., 2009). Conversely, IL-6 is detected in C57BL/6 mice, but not BALB/c mice (van der Fits 

et al., 2009). Thus, a role for these cytokines in oedema during psoriasis warrants further 

investigation. 

Analysis by qPCR revealed P2X7 mRNA expression was up-regulated in IMQ-treated skin in 

both BALB/c and C57BL/6 mice. Although, it was not determined if P2X7 protein is 

increased in these mice, P2X7 protein is increased in lesional skin from psoriasis patients 

(Pastore et al., 2007, Killeen et al., 2013). Notably, P2X7 is up-regulated on human 

keratinocytes by IFN-γ (Pastore et al., 2007), a cytokine implicated in psoriasis pathogenesis 

(Johnson-Huang et al., 2012) including IMQ-induced psoriasis-like inflammation (van der 

Fits et al., 2009). Therefore, P2X7 may be up-regulated on keratinocytes due to IFN-γ present 

in IMQ-treated skin. Alternatively, since P2X7 is also found on various skin immune cells 

(Geraghty et al., 2016), increased P2X7 expression in IMQ-treated ears may simply reflect 

increased numbers of infiltrating leukocytes in IMQ-induced skin as observed in the current 

study.  

Finally, this study demonstrated that HaCaT keratinocytes can constitutively release ATP, as 

previously observed (Burrell et al., 2005), and that this release could be increased by IMQ. 

The IMQ-induced ATP release was not due to cytotoxicity, as IMQ did not significantly alter 

LDH release. Although genetic deletion or pharmacological blockade of P2X7 did not impact 

IMQ-induced psoriasis-like inflammation in this study, extracellular ATP may be involved in 

the development of this disease through activation of purinergic receptors other than P2X7. In 

particular, P2Y1, P2Y2 and P2Y6 have been implicated in psoriasis or other inflammatory 

skin conditions (Burnstock et al., 2012). Conversely, ATP can be degraded to adenosine by 

ecto-nucleotidases such as CD39, present on Langerhans cells in the skin (Mizumoto et al., 

2002), and CD73, present on dendritic cells (Airas and Jalkanen, 1996), to promote anti-
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inflammatory effects through activation of adenosine receptors (Gessi et al., 2014). 

Therefore, CD39 or CD73 may also play a role in the development of psoriasis-like 

inflammation in this model. 

In conclusion, pharmacological blockade and genetic deletion of P2X7 could not prevent 

IMQ-induced psoriasis-like inflammation. However, given the potential roles of P2X7 in 

human psoriasis (Pastore et al., 2007, Killeen et al., 2013) and other skin diseases (Geraghty 

et al., 2016), a role for this receptor in human psoriasis or other mouse models of this disease 

cannot be excluded. 
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Chapter 8: General Discussion 

8.1. Introduction 

The purinergic signalling system is important in immunity, with P2X, P2Y and adenosine 

(P1) receptors found on a number of immune cell subtypes (Burnstock and Boeynaems, 

2014). Extracellular adenosine triphosphate (ATP) can act as a danger associated molecular 

pattern (DAMP), and exert pro-inflammatory effects through P2X7 activation (Adinolfi et al., 

2017). ATP is broken down by ecto-nucleoside triphosphate diphosphohydrolase-1 (CD39) to 

adenosine diphosphate (ADP) and adenosine monophosphate (AMP), and subsequently by 

ecto-5’-nucleotidase (CD73) to adenosine, which can activate adenosine receptors to exert 

anti-inflammatory effects (Antonioli et al., 2013). Purinergic signalling has been studied in 

transplantation, including hematopoietic stem cell transplantation (HSCT) (Section 1.8.1). 

Moreover, this signalling pathway has been implicated in graft-versus-host disease (GVHD), 

a common complication of allogeneic HSCT. In particular, allogeneic mouse models of 

GVHD have implicated a pro-inflammatory role for the P2X7 receptor in this disease 

(Wilhelm et al., 2010). Conversely, allogeneic mouse models of GVHD have supported an 

anti-inflammatory role of the CD73/A2A receptor pathway in this disease (Lappas et al., 2010, 

Tsukamoto et al., 2012, Han et al., 2013, Wang et al., 2013). However, prior to this thesis the 

role of purinergic signalling had not been investigated in a humanised mouse model of 

GVHD.  

 

8.2. Establishment and Characterisation of a Humanised Mouse Model of 

GVHD 

In GVHD, humanised mouse models are valuable preclinical models to investigate cell 

signalling pathways and to identify potential therapeutics (Hogenes et al., 2014). The most 
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commonly used model is the humanised non-obese diabetic (NOD)-severe combined 

immunodeficient (SCID)-interleukin (IL)-2 receptor γ common chain null (IL-2Rγnull) (NSG) 

mouse model, due to the superior engraftment of human leukocytes after injection of human 

(h) peripheral blood mononuclear cells (PBMCs) (King et al., 2008). Thus, this model was 

chosen to investigate the role of purinergic signalling in GVHD (Chapters 3-6). However, 

prior to these studies, the humanised NSG mouse model of GVHD was established at the 

University of Wollongong (Wollongong, Australia) (Chapter 2). This initial study (Chapter 2) 

described the successful establishment of this model, with 77% of mice injected with 

hPBMCs (10 out of 13) developing clinical GVHD. All mice engrafted human leukocytes 

(hCD45+), with the majority of engrafted leukocytes identified as T cells (hCD3+), similar to 

previous studies (King et al., 2009, Ali et al., 2012). Furthermore, histological evidence of 

GVHD was similar to previous studies including leukocyte infiltration and inflammatory 

damage of target organs (King et al., 2009). The current study (Chapter 2) also reported that 

23% of mice injected with hPBMCs (3 out of 13) developed subclinical GVHD but did not 

progress to clinical GVHD. This afforded the opportunity to compare differences between 

humanised NSG mice with clinical or subclinical GVHD. Humanised NSG mice that develop 

clinical GVHD demonstrate increased splenic hCD4+:hCD8+ T cell ratios compared to mice 

with subclinical GVHD. This finding is consistent with human studies, where higher 

CD4+:CD8+ T cell ratios indicate greater disease severity (Huttunen et al., 2015, Budde et al., 

2017). Serum hIFN-γ was also increased in humanised NSG mice with clinical GVHD 

compared to those with subclinical GVHD. Whilst reduced hIFN-γ correlates with reduced 

disease severity in allogeneic (Wilhelm et al., 2010) and humanised mouse models (Gregoire-

Gauthier et al., 2012), this thesis is the first to highlight this cytokine as a potential biomarker 

in this humanised mouse model of GVHD.  
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Although histology of saline-injected and humanised NSG mice has been compared 

previously (King et al., 2009, Choi et al., 2011), this study (Chapter 2) also provided a 

comparison of histology of GVHD target organs between healthy (saline-injected) NSG mice, 

mice with subclinical GVHD and mice with clinical GVHD. Mice with subclinical GVHD 

demonstrated some human cell infiltration into spleens, liver, small intestines and skin. 

Conversely, histological damage and leukocyte infiltration were more evident in mice with 

clinical GVHD, with greater leukocyte infiltration and inflammatory damage to target organs, 

similar to previous studies (King et al., 2008). The lesser amount of damage in mice with 

subclinical GVHD compared to clinical GVHD is similar to that observed in the liver (Vlad 

et al., 2009, Abraham et al., 2015, Ehx et al., 2017, Burlion et al., 2017), and small intestine 

(Vlad et al., 2009, Nakauchi et al., 2015) of humanised mice following various treatments to 

prevent GVHD.  

Although our initial study (Chapter 2) provided insight into the humanised NSG mouse 

model of GVHD, further studies could investigate engraftment of human antigen presenting 

cells (APCs), including subtype analysis. Murine APC activation of human T cells has been 

demonstrated, as genetic deficiency of MHC I or II molecules delays GVHD development 

(King et al., 2009), and deficiency of both prevents GVHD almost completely (Brehm et al., 

2018) in humanised mice. Further, murine β7.2 on APCs interaction with CD28 on human T 

cells can provide co-stimulation for human T cell activation (Freeman et al., 1993). Yet, later 

mouse models (Chapters 5 and 6) highlighted engraftment of a hCD45+ hCD3- hCD19- 

hCD83+ population, which are likely dendritic cells (DCs), as CD83 is a marker of DCs 

(Zhou and Tedder, 1995), which could potentially be activating human T cells to promote 

GVHD in this humanised NSG mouse model. Therefore, whilst murine MHC activation is 

likely activating T cells in humanised NSG mice in these studies, the possibility of engrafted 
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human APCs resulting in T cell activation remains to be elucidated, potentially using the 

MHC I and II deficient NSG mouse model.  

Future studies could also further explore leukocyte infiltration into target organs. Neutrophils 

are recruited into the intestines early during GVHD (Hülsdünker et al., 2018) and are 

important in disease pathogenesis in HSCT patients with GVHD (Schwab et al., 2014). 

Whilst human T cells are the predominant human cell type responsible for mediating damage 

in the humanised NSG mouse model used throughout this thesis, one study (Chapter 4) 

highlighted that T cells were present in target organs but did not constitute all immune 

infiltrates. The origin (human or murine) of neutrophils could also be explored, since NOD 

mice, the background strain of NSG mice, demonstrate increased numbers of murine 

neutrophils into target organs (Shultz et al., 1995), and it is unknown whether human 

neutrophils will engraft after injection of hPBMCs.  

Nevertheless, this thesis has demonstrated that the humanised NSG mouse model of GVHD 

is reproducible, having been performed multiple times, with five different human donors. 

Clinical and histological evidence (characterised in Chapter 2 and demonstrated in Chapters 

3-6) highlights the efficacy of this humanised mouse model as a useful preclinical model of 

GVHD.  

 

8.3. The Role of Purinergic Signalling in a Humanised Mouse Model of 

GVHD 

These studies (Chapters 3 and 4) investigated the previously unexplored role of P2X7 in a 

humanised NSG mouse model of GVHD. In allogeneic mouse models of GVHD, ATP 

released from damaged and dying cells accumulates at sites of damage (Wilhelm et al., 2010) 

and P2X7 blockade using the antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic 
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acid (PPADS), KN-62 (Wilhelm et al., 2010), stavudine (Fowler et al., 2014), and BBG 

(Zhong et al., 2016) can reduce disease severity. The first of these studies (Chapter 3) 

demonstrated that a short-term regime of BBG was able to reduce serum hIFN-γ and 

histological GVHD in humanised mice, paralleling features of mice with subclinical GVHD 

(Chapter 2). Moreover, this reduction in serum hIFN-γ and histological GVHD parallels 

studies of P2X7 blockade or deficiency in allogeneic mouse models of GVHD (Wilhelm et 

al., 2010). However, the short-term BBG regime did not impact clinical GVHD (Chapter 3), 

suggesting that other mechanisms are involved in subclinical GVHD (Chapter 2) and in the 

increased survival observed in allogeneic GVHD following P2X7 blockade or deficiency 

(Wilhelm et al., 2010).  

In contrast to the short-term BBG regimen (Chapter 3), a long-term regimen of BBG 

(Chapter 4) only showed reduced leukocyte infiltration and histological damage in the liver 

of humanised mice, and did not reduce serum IFN- γ. The greater reduction in serum hIFN-γ 

concentrations and reduced histological damage, using the short-term BBG regimen, 

compared to the long-term regimen may indicate the importance of P2X7 early in GVHD 

induction, indicating more frequent P2X7 blockade early post-transplantation (days 0, 2, 4, 6, 

8) may be more important than prolonged P2X7 blockade (3 times weekly). Alternatively, 

comparison of humanised mice following short-term or long-term treatment regimens with 

either BBG or saline suggest that long-term treatment with saline in humanised NSG mice 

reduces serum hIFN-γ concentrations and negating any benefits of long-term BBG. This is 

supported by the injection of saline as a means to rescue mice from weight loss in other 

inflammatory disease models (van der Fits et al., 2009).  

Potential limitations in these studies include the use of BBG as the P2X7 antagonist. BBG 

was chosen as it is cheap, and has shown efficacy in over 40 studies of disease (Bartlett et al., 

2014). However, BBG has a relatively high half maximal inhibitory concentration (IC50) 
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(Jiang, 2012), and has off-target effects (Qiu and Dahl, 2009). Thus, other more potent, 

selective P2X7 antagonists, including A804598 (Chapter 7), could be used in future studies in 

the humanised NSG mouse model of GVHD. Otherwise, the use of PPADS or KN-62, the 

drugs shown to be efficacious in allogeneic mouse models of GVHD (Wilhelm et al., 2010) 

could be used to further investigate the role of P2X7, and the therapeutic potential of P2X7 

blockade to prevent disease in a humanised mouse model of GVHD. Alternatively, biologics 

such as nanobodies could be tested in this model. Nanobodies against P2X7 can limit the 

inflammation associated with experimental glomerulonephritis and allergic contact dermatitis 

(Danquah et al., 2016) and thus represent a potential therapy for GVHD prevention. 

Further, this thesis aimed to explore the role of the CD73/A2A signalling axis on the 

development of GVHD in humanised NSG mice. However, during the course of this thesis 

Covarrubias et al. (2016) revealed that the purported CD73 inhibitor αβ-methylene ADP 

(APCP), could also inhibit CD39. Thus, data using APCP (Chapter 5) could not be solely 

attributed to the prevention of adenosine production but also to the accumulation of ATP.  

Administration of APCP or the broad-spectrum adenosine receptor antagonist caffeine 

(Chapter 5) were hypothesised to worsen GVHD in humanised NSG mice based on previous 

studies in allogeneic mouse models of GVHD (Tsukamoto et al., 2012, Wang et al., 2013). In 

contrast to this hypothesis, APCP, but not caffeine, worsened GVHD in humanised NSG 

mice. APCP worsened disease through increased weight loss, liver GVHD and serum hIL-2 

concentrations. Collectively, this suggests that accumulation of ATP rather than adenosine 

receptor blockade worsened GVHD in humanised NSG mice. Given that P2X7 is involved, in 

part, in GVHD development in these mice (Chapters 3 and 4), the accumulation of ATP, as a 

result of CD39 blockade by APCP, may be acting on P2X7 to promote GVHD in this model. 

However, serum hIFN-γ concentrations from APCP-injected mice exceeded the scale using 

the flow cytometric cytokine assay whilst subsequent analysis of this cytokine using an 
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ELISA failed to detect any hIFN-γ, possibly due to freeze-thawing samples. Thus, this serum 

cytokine could not be compared between BBG- and APCP-injected humanised NSG mice.  

The inability of caffeine to alter GVHD in humanised NSG mice contrasts the worsening 

effect of this compound in allogeneic mouse models of GVHD (Tsukamoto et al., 2012). 

Notably, the same caffeine regime was used in these two studies suggesting that the observed 

differences in GVHD progression relates to differences between the two models, and that the 

CD73/A2A
 pathway may have a minor role in the humanised NSG mouse model of GVHD.  

This may be attributed to species selective differences of caffeine on murine and human A2A 

or other adenosine receptors and other targets (Fredholm et al., 2011a). However, due to 

problems dissolving the more selective A2A antagonist SCH 52861 (Varani et al., 1996) and 

that caffeine did not offer observable effects, A2A blockade was not explored further in 

humanised NSG mice. Given the role of A2A in allogeneic GVHD (Lappas et al., 2010, 

Tsukamoto et al., 2012, Han et al., 2013, Wang et al., 2013) investigation with other A2A 

antagonists or agonists in humanised NSG mice remains warranted. 

The A2A agonist CGS 21680 was hypothesised to reduce GVHD progression in humanised 

NSG mice based on previous studies where another A2A agonist, ATL-146e, reduced disease 

severity and mortality in allogeneic mouse models of GVHD (Lappas et al., 2010, Han et al., 

2013). This study (Chapter 6) demonstrated that activation of A2A with CGS 21680 had both 

positive and negative effects on disease progression in humanised NSG mice. This was 

unlikely due to the effectiveness of CGS 21680, as the same dose (0.1 mg/kg) has been 

efficacious in preventing disease in mouse models of acute lung inflammation (Impellizzeri et 

al., 2011), pleurisy (da Rocha Lapa et al., 2012) and arthritis (Mazzon et al., 2011). In the 

allogeneic mouse models of GVHD, the anti-inflammatory effects of adenosine receptor 

activation was shown to rely on the production of adenosine by regulatory T (Treg) cells 
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(Han et al., 2013). Human (h) Treg cells were shown to be present in humanised NSG mice 

(Chapters 5 and 6), but may not be present in sufficient numbers in this model to drive 

adenosine production to protect GVHD target organs. Abraham et al. (2012) demonstrated 

that functional hTreg cells can only be maintained in humanised NSG mice by providing 

hIL-2. Thus, the lack of functional hTreg cells in humanised NSG mice may explain why 

CGS 21680 did not have a significant impact on GVHD development. Although CGS 21680 

had confounding effects, and caused weight loss in healthy NSG mice, it is worthwhile 

investigating the effect of ATL-146e in this humanised mouse model of GVHD, due to the 

beneficial effects of ATL-146e, and its analogues ATL-370 and ATL-1223, in allogeneic 

mouse models of GVHD (Lappas et al., 2010, Han et al., 2013). These drugs could not be 

investigated in the current study, as ATL-146e is currently being investigated in clinical trials 

(Gao and Jacobson, 2011), and all three are no longer commercially available.  

In summary, the above studies support a role for extracellular ATP and P2X7 activation in 

GVHD progression in humanised NSG mice, whilst A2A activation has both beneficial and 

detrimental effects on disease progression in this model. Short-term P2X7 blockade with 

BBG (Chapter 3) led to reduced serum hIFN-γ concentrations, and reduced histological 

damage in all organs, while a long-term regime (Chapter 4) reduced leukocyte infiltration and 

damage to a greater extent. Conversely, CD39/CD73 blockade using APCP (Chapter 5) led to 

increased leukocyte infiltration and histological damage, and an increase in the 

pro-inflammatory cytokine hIL-2. However, A2A activation had conflicting results (Chapter 

6). Therefore, theoretically in this humanised mouse model of GVHD the release and 

accumulation of ATP leads to activation of P2X7, potentially on APCs such as DCs. This 

leads to T cell activation and proliferation, and release of pro-inflammatory cytokines such as 

IFN-γ and IL-2. T cells then migrate to target tissues, predominantly the liver, to promote 

inflammation (Figure 8.1.). 
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GVHD. 1. Early after transplantation of hPBMCs, ATP is released, and accumulation of ATP leads to 
P2X7 activation on APCs, such as DCs. 2. APCs subsequently activate Th1 cells which release IL-2 
and IFN-γ. 3. These cytokines propagate damage, potentially resulting in further ATP release and 
P2X7 activation on APCs (1.), resulting in a feed-forward loop of inflammation. A2A activation cannot 
prevent GVHD development in humanised NSG mice (not shown). 4. Degradation of ATP to ADP, 
AMP and subsequently adenosine can potentially reduce GVHD. Abbreviations; ADP, adenosine 
diphosphate, AMP, adenosine monophosphate, APC, antigen presenting cell, APCP, αβ-methylene-
ADP, ATP, adenosine triphosphate, DC, dendritic cell, IFN-γ, interferon gamma, IL-2, interleukin-2, 
Th, T helper, Treg, regulatory T cell. 

 

8.4. The Role of P2X7 in a Psoriasis-Like Inflammatory Mouse Model of 

Inflammation 

A preliminary study was undertaken to assess the role of P2X7 in psoriasis (Chapter 7), as an 

alternate inflammatory disease to GVHD. This involved the establishment of the imiquimod 

(IMQ)-induced psoriasis-like inflammation model (van der Fits et al., 2009) at the University 

of Wollongong. The landmark study by van der Fits et al. (2009) demonstrated IMQ induces 

redness, scaling and thickening of skin due to altered differentiation and the 

hyperproliferation of keratinocytes, as well as immune infiltrates consisting of neutrophils, T 

cells and professional APCs resulting in psoriatic-like lesions. Our study confirmed that 

BALB/c mice develop greater psoriasis (ear swelling and inflammation) compared to 

C57BL/6 mice as previously described (van der Fits et al., 2009). IMQ also induced ATP 

Figure 8.1. The potential role of purinergic signalling in the humanised NSG mouse model of  
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release from keratinocytes in vitro and up-regulated P2X7 expression in the skin of these 

mice. Nevertheless, pharmacological blockade of P2X7 with the antagonists BBG or 

A804598 or P2X7 deficiency failed to alter disease progression in this model. During the 

course of this PhD a study by Diaz-Perez et al. (2018) confirmed that P2X7 does not impact 

IMQ-induced psoriasis-like inflammation. Thus, the IMQ-induced psoriasis-like 

inflammation model was not explored further, with time and resources directed to exploring 

the role of purinergic signalling in GVHD. Moreover, it was never intended to use the IMQ-

induced psoriasis-like inflammation mouse model of psoriasis to investigate the role of 

adenosine receptor signalling as it is well known that IMQ can interact as an antagonist of 

adenosine receptors (Schön et al., 2006).  

Notably, Diaz-Perez et al. (2018) demonstrated a role for P2X7 in recombinant IL-23 (rIL-

23) induced psoriasis-like inflammation, a finding consistent with the up-regulation of P2X7 

in human psoriatic skin (Pastore et al., 2007, Killeen et al., 2013). To reconcile these 

differences in the role for P2X7 in IMQ- and recombinant IL-23-induced psoriasis-like 

inflammation, Diaz-Perez et al. (2018) propose that IMQ bypasses the need to activate the 

NLRP3 inflammasome/IL-1β to directly induce IL-17 production, which is a key cytokine in 

psoriasis (Rizzo et al., 2011). This proposal was based on prior studies (Rabeony et al., 2015) 

in which IMQ-induced psoriasis was found to be independent of the NLRP3 inflammasome. 

Thus, although further studies of P2X7 in psoriasis were not continued in this model, future 

studies could potentially utilise the recombinant IL-23 induced psoriasis-like inflammation 

model to explore the role of P2X7 in this disease. 
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8.5. Conclusion 

This thesis demonstrated that the purinergic signalling system plays a role in the development 

of disease in a humanised mouse model of GVHD. Increased serum hIFN-γ was identified as 

a marker of worsened disease severity in humanised mice. Similar to allogeneic mouse 

models, short-term P2X7 blockade with BBG reduced GVHD severity through decreased 

serum hIFN-γ and reduced histological damage, and long-term P2X7 blockade with BBG 

reduced liver GVHD compared to control mice. Additionally, CD39/CD73 blockade using 

APCP worsened GVHD in humanised mice, paralleling results in allogeneic mouse models. 

However, in contrast to allogeneic mouse models, adenosine receptor blockade using the 

broad spectrum antagonist caffeine did not worsen GVHD severity in humanised mice. 

Further, adenosine receptor activation with the specific agonist CGS 21680 did not prevent 

GVHD, but instead exaggerated both positive and negative aspects of GVHD. This suggests 

that extracellular ATP and P2X7 activation is the main purinergic signalling pathway 

involved in disease pathogenesis in a humanised mouse model of GVHD. 

P2X7 was also investigated in the IMQ-induced psoriasis-like inflammation mouse model of 

GVHD, where genetic deficiency or pharmacological blockade did not impact disease 

development in this model. However, the role of this purinergic signalling pathway in 

psoriasis cannot be excluded based on this one model, as it has been shown to be important in 

other models of this disease. 
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Appendices: Supplementary Data 

 

Blood cells from humanized mice were labelled with isotype control or CD-specific monoclonal 
antibodies (mAb). Forward and side scatter was used to identify leukocytes, which were subsequently 
used to identify human leukocytes (hCD45+ mCD45-), human T cells (hCD45+ mCD45- hCD3+ 
hCD19-) and human B cells (hCD45+ mCD45- hCD3- hCD19+).  

Figure S3.1. Flow cytometric gating of leukocytes in blood from humanized mice. 
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Splenocytes from humanised mice were labelled with isotype control or CD-specific monoclonal 
antibodies (mAb). Forward and side scatter was used to identify leukocytes, which were subsequently 
used to identify human leukocytes (hCD45+ mCD45-), human T cells (hCD45+ mCD45- hCD3+ 
hCD19-) and human B cells (hCD45+ mCD45- hCD3- hCD19+). Forward and side scatter was used to 
identify leukocytes, which were subsequently used to identify human CD4+ T cell (hCD3+ hCD4+ 
hCD8-), and human hCD8+ T cell (hCD3+ hCD4- hCD8+) subsets. 

Figure S3.2. Flow cytometric gating of leukocytes in spleens from humanised mice. 
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murine CD11c+ splenic dendritic cells. Human PBMCs and splenocytes from NOD-SCID-IL2Rγnull 
mice were incubated with YO-PRO-12+ in the absence (basal) (grey histograms) or presence of 
adenosine triphosphate (ATP) (black histograms), and subsequently labelled with anti-human (h) CD3 
or anti-murine (m) CD11c monoclonal antibody. Forward and side scatter was used to identify 
leukocytes, which were subsequently used to identify hCD3+ T cells or murine CD11c+ splenic DCs. 
YO-PRO-12+ uptake into these cells was then quantified using geometric mean fluorescence of 
histograms. 

Figure S3.3. Flow cytometric analysis of YO-PRO-12+ uptake into human hCD3+ T cells and  
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and CD8+ T cells. Splenocytes from humanised mice were incubated with phorbol 12-myristate 13-
acetate and ionomycin, and labelled with isotype control or specific monoclonal antibodies. Forward 
and side scatter was used to identify leukocytes, which were subsequently used to identify human 
CD4+ T cell (hCD3+ hCD4+ hCD8-), and human hCD8+ T cell (hCD3+ hCD4- hCD8+) subsets. The 
percentage of hIFN-γ and hIL-17 was quantified as the difference between cytokine specific (black 
histograms) and isotype control (grey histograms) mAb labelling (indicated by marker regions as 
shown).  

Figure S3.4. Flow cytometric analysis of intracellular human IFN-γ and IL-17 in human CD4+  
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. (a-b) NOD-SCID-IL2Rγnull (NSG) mice were injected intra-peritoneally with 10 x 106 human (h) 
peripheral blood mononuclear cells, and subsequently with saline or saline containing Brilliant Blue G 
(BBG) (50 mg/kg) thrice weekly. (a) Blood cells and (b) splenocytes from humanised NSG mice were 
labelled with isotype control or CD-specific monoclonal antibodies. (a, b) Leukocytes, initially gated 
by forward scatter (FSC-A) and side scatter (SSC-A), were analysed to determine the percentages of 
human leukocytes (hCD45+ mCD45-), human T cells (hCD45+ mCD45- hCD3+ hCD56-), human 
NK cells (hCD45+ mCD45- hCD3- hCD56+), human NKT cells (hCD45+ mCD45- hCD3+ 
hCD56+), human non-T/NK/NKT cells (hCD45+ mCD45- hCD3- hCD56-), and (spleen only) human 
CD4+ T cell (hCD3+ hCD4+ hCD8-), and human hCD8+ T cell (hCD3+ hCD4- hCD8+) subsets.  

Figure S4.1. Flow cytometric gating of leukocytes in blood and spleens from humanised mice  
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mouse model of GVHD. (a-b) NOD-SCID-IL2Rγnull (NSG) mice were injected intra-peritoneally 
(i.p.) with 10 x 106 human (h) peripheral blood mononuclear cells (hPBMCs), and subsequently with 
saline or saline containing Brilliant Blue G (BBG) (50 mg/kg) thrice weekly. (a) Small intestines and 
(b) skin from hPBMC-injected mice injected with saline or BBG at end-point were stained with 
haematoxylin and eosin. Images were captured by microscopy; representative images from one mouse 
of seven saline- or 10 BBG-injected mice. (b) Image analysis was used to quantitate the mean 
epidermal thickness from three different skin images per mouse. Data represents group means ± SD 
(saline n = 6; BBG n = 7; P = 0.2174); symbols represent individual mice. 

 

 

The percentage of human leukocytes in blood at 3 weeks post-hPBMC injection collected from all 
humanised NSG mice were determined by flow cytometry. Forward scatter area (FSC-A) and forward 
scatter height (FSC-H) were used to identify single cells (far left panel). Forward scatter (FSC-A) and 
side scatter (SSC-A) (middle left panel) were used to identify and subsequently analyse the 
percentages of human leukocytes (hCD45+mCD45-; middle right panel), which comprised T and non-
B/T cells (hCD3+hCD19- and hCD3-hCD19- respectively; far right panel). 

Figure S4.2. Long-term BBG treatment does not affect intestinal or skin damage in a humanised  

Figure S5.1. Flow cytometric gating of leukocytes in blood from humanised mice.  
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(a-b) The percentage of human leukocytes in spleens at end-point collected from all humanised NSG 
mice were determined by flow cytometry. (a) Forward scatter (FSC-A, FSC-H) and side scatter (SSC-
A) were used to identify and subsequently analyse single leukocytes (top left and middle panels). 
These leukocytes were analysed to determine the percentages of human leukocytes (hCD45+mCD45-; 
top right panel), and subsequently used to identify T cells (hCD3+hCD19-; bottom left panel) and 
iNKT cells (hCD3+hCD19-hVα24-Jα18+; bottom middle panel), or non-B/T cells (hCD3-hCD19-; 
bottom left panel), which were subsequently used to identify monocytes and DCs (hCD14+CD83- and 
hCD14-CD83+ respectively; bottom right panel). (b) Single leukocytes were gated as above. T cells 
were identified (hCD3+; top left panel), and subsequently used to determine hCD4+ and hCD8+ T cell 
subsets (top middle panel), and hCD39 and hCD73 expression on hCD4+ (top right panel) and hCD8+ 
(bottom left panel) T cells was analysed. hCD4+ T cells were also gated to identify Tregs 
(hCD25+hCD127lo; bottom right panel). 

 

Figure S5.2. Flow cytometric gating of leukocytes in spleens from humanised mice. 
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